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A common feature of many duality results is that the involved 
equivalence functors are liftings of hom-functors into the two-
element space resp. lattice. Due to this fact, we can only 
expect dualities for categories cogenerated by the two-element 
set with an appropriate structure. A prime example of such 
a situation is Stone’s duality theorem for Boolean algebras 
and Boolean spaces, the latter being precisely those compact 
Hausdorff spaces which are cogenerated by the two-element 
discrete space. In this paper we aim for a systematic way 
of extending this duality theorem to categories including all 
compact Hausdorff spaces. To achieve this goal, we combine 
duality theory and quantale-enriched category theory. Our 
main idea is that, when passing from the two-element discrete 
space to a cogenerator of the category of compact Hausdorff 
spaces, all other involved structures should be substituted by 
corresponding enriched versions. Accordingly, we work with 
the unit interval [0, 1] and present duality theory for ordered 
and metric compact Hausdorff spaces and (suitably defined) 
finitely cocomplete categories enriched in [0, 1].
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1. Introduction

In [5], the authors make the seemingly paradoxical observation that “. . . an equation 
is only interesting or useful to the extent that the two sides are different!”. Undoubtedly, 
a moment’s thought convinces us that an equation like eiω = cos(ω) + i sin(ω) is far more 
interesting than the rather dull statement that 3 = 3. A comparable remark applies if 
we go up in dimension: equivalent categories are thought to be essentially equal, but 
an equivalence is of greater interest if the involved categories look different. Numerous 
examples of equivalences of “different” categories relate a category X and the dual of a 
category A. Such an equivalence is called a dual equivalence or simply a duality, and 
is usually denoted by X � Aop. Like for every other equivalence, a duality allows us to 
transport properties from one side to the other. The presence of the dual category on one 
side is often useful since our knowledge of properties of a category is typically asymmetric. 
Indeed, many “everyday categories” admit a representable and hence limit preserving 
functor to Set. Therefore in these categories limits are “easy”; however, colimits are often 
“hard”. In these circumstances, an equivalence X � Aop together with the knowledge of 
limits in A help us understand colimits in X. The dual situation, where colimits are “easy” 
and limits are “hard”, frequently emerges in the context of coalgebras. For example, the 
category CoAlg(V ) of coalgebras for the Vietoris functor V on the category BooSp of 
Boolean spaces and continuous functions is known to be equivalent to the dual of the 
category BAO with objects Boolean algebras B with an operator h : B → B satisfying 
the equations

h(⊥) = ⊥ and h(x ∨ y) = h(x) ∨ h(y),

and with morphisms the Boolean homomorphisms which also preserve the additional 
unary operation (see [20]). It is a trivial observation that BAO is a category of algebras 
over Set defined by a (finite) set of operations and a collection of equations; every such 
category is known to be complete and cocomplete. Notably, the equivalence CoAlg(V ) �
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