

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Variation of the Nazarov–Sodin constant for random plane waves and arithmetic random waves

霐

MATHEMATICS

Pär Kurlberg, Igor Wigman^{*}

A R T I C L E I N F O

Article history: Received 4 October 2017 Received in revised form 3 March 2018 Accepted 21 March 2018 Available online xxxx Communicated by Gilles Pisier

Keywords: Nodal components Nazarov–Sodin constant Spectral measure Weak-* topology Continuity Arithmetic random waves

ABSTRACT

This is a manuscript containing the full proofs of results announced in [10], together with some recent updates. We prove that the Nazarov–Sodin constant, which up to a natural scaling gives the leading order growth for the expected number of nodal components of a random Gaussian field, genuinely depends on the field. We then infer the same for "arithmetic random waves", i.e. random toral Laplace eigenfunctions.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

For $m \geq 2$, let $f : \mathbb{R}^m \to \mathbb{R}$ be a *stationary* centred Gaussian random field, and $r_f : \mathbb{R}^m \to \mathbb{R}$ its covariance function

$$r_f(x) = \mathbb{E}[f(0) \cdot f(x)] = \mathbb{E}[f(y) \cdot f(x+y)].$$

* Corresponding author.

E-mail addresses: kurlberg@math.kth.se (P. Kurlberg), igor.wigman@kcl.ac.uk (I. Wigman).

Given such an f, let ρ denote its spectral measure, i.e. the Fourier transform of r_f (assumed to be a probability measure); note that prescribing ρ uniquely defines f by Kolmogorov's Theorem (cf. [6, Chapter 3.3]). In what follows we often allow for ρ to vary; it will be convenient to let f_{ρ} denote a random field with spectral measure ρ . We further assume that a.s. f_{ρ} is sufficiently smooth, and that the distribution of f and its derivatives is non-degenerate in an appropriate sense (a condition on the support of ρ).

1.1. Nodal components and the Nazarov-Sodin constant

Let $\mathcal{N}(f_{\rho}; R)$ be the number of connected components of $f_{\rho}^{-1}(0)$ in $B_0(R)$ (the radius-R ball centred at 0), usually referred to as the *nodal components* of $f_{\rho}; \mathcal{N}(f_{\rho}; R)$ is a random variable. Assuming further that f_{ρ} is ergodic (equivalently, ρ has no atoms), with non-degenerate gradient distribution (equivalent to ρ not being supported on a hyperplane passing through the origin), Nazarov and Sodin [21, Theorem 1] evaluated the expected number of nodal components of f_{ρ} to be asymptotic to

$$\mathbb{E}[\mathcal{N}(f_{\rho}; R)] = c_{NS}(\rho) \cdot \operatorname{Vol}(B(1)) \cdot R^{m} + o(R^{m}), \qquad (1.1)$$

where $c_{NS}(\rho) \geq 0$ is a constant, subsequently referred to as the "Nazarov–Sodin constant" of f_{ρ} , and Vol(B(1)) is the volume of the radius-1 *m*-ball $B(1) \subseteq \mathbb{R}^m$. They also established convergence in mean, i.e., that

$$\mathbb{E}\left[\left|\frac{\mathcal{N}(f_{\rho};R)}{\operatorname{Vol}(B(1))\cdot R^{m}} - c_{NS}(\rho)\right|\right] \to 0;$$
(1.2)

it is a consequence of the assumed ergodicity of the underlying random field f_{ρ} . In this manuscript we will consider c_{NS} as a function of the spectral density ρ , without assuming that f_{ρ} is ergodic. To our best knowledge, the value of $c_{NS}(\rho)$, even for a single ρ , was not rigorously known heretofore.

For m = 2, $\rho = \rho_{S^1}$ the uniform measure on the unit circle $S^1 \subseteq \mathbb{R}^2$ (i.e. $d\rho = \frac{d\theta}{2\pi}$ on S^1 , and vanishing outside the circle) the corresponding random field f_{RWM} is known as random monochromatic wave; according to Berry's Random Wave Model [3], f_{RWM} serves as a universal model for Laplace eigenfunctions on generic surfaces in the high energy limit. The corresponding universal Nazarov–Sodin constant

$$c_{\rm RWM} = c_{NS} \left(\frac{d\theta}{2\pi}\right) > 0 \tag{1.3}$$

was proven to be strictly positive [14]. Already in [4], Bogomolny and Schmit employed the percolation theory to predict its value, but recent numerics by Nastacescu [13], Konrad [8] and Beliaev–Kereta [2], consistently indicate a 4.5–6% deviation from these predictions.

More generally, let (\mathcal{M}^m, g) be a smooth compact Riemannian manifold of volume $\operatorname{Vol}(\mathcal{M})$. Here the restriction of a fixed random field $f : \mathcal{M} \to \mathbb{R}$ to growing domains, as

Download English Version:

https://daneshyari.com/en/article/8904837

Download Persian Version:

https://daneshyari.com/article/8904837

Daneshyari.com