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Let ME be the moduli space of framed K-instantons over
S* with instanton number n when K is a compact simple Lie
group of classical type. Let U be the Uhlenbeck partial com-
pactification of MX. A scheme structure on UX is endowed
by Donaldson as an algebro-geometric Hamiltonian reduction
of ADHM data. In this paper, for K = SO(N,R), N > 5, we
prove that UX is an irreducible normal variety with smooth
locus MX. Hence, together with the author’s previous results
on USp(N), the K-theoretic Nekrasov partition function for
any simple classical group other than SO(3,R), is interpreted
as a generating function of Hilbert series of the instanton mod-
uli spaces.
Using this approach we also study the case K = SO(4,R)
which is the unique semisimple but non-simple classical group.
© 2018 Elsevier Inc. All rights reserved.
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1. Introduction

Let K be a compact classical group. The K-theoretic Nekrasov partition function is
defined by Nekrasov and Shadchin as the formal sum of the equivariant integrations of
K-theory classes on the ADHM quiver representation space associated to K-instantons
[38]. Our previous result [11] says that it is the generating function of the Hilbert series
of the coordinate rings of the framed K-instanton moduli spaces MX over all instanton
numbers n if K = USp(N/2) the real symplectic group where N € 2Z>o. We aim to
prove the parallel result for K = SO(N,R). Note that such a result has been known for
K = SU(N) essentially due to Crawley-Boevey [14].

1.1. Main result

We state the main result of the paper in this subsection. For the purpose we need
to describe the ADHM data of instantons following Donaldson’s argument [15]. First
we consider the vector space M of ordinary ADHM quiver representations coming from
framed SU(N)-instantons with instanton number k. It is given as M = End(V)®? @
Hom (W, V) @ Hom(V, W). M is a cotangent space, hence naturally a symplectic vector
space. The adjoint GL(V')-action preserves the symplectic structure.

We fix an instanton number n. Let & = 2n,4n or n according to K = SO(N,R)
(N > 4), SO(3,R) or USp(NN/2). Let

Sp(n) if K =SO(N,R) with N >4
G := ¢ Sp(2n) if K =S0(3,R)
O(n) if ¥ = USp(N/2) with N € 2Zs.

Let V, W be the vector representations of G, K¢ respectively.
We define a symplectic subspace of M as

N:= NV,W = {(BlvB%ivj) € M|B1 = BTDB2 = B;,] = 7’*}
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