

Contents lists available at ScienceDirect

Advances in Mathematics

Geometry of Uhlenbeck partial compactification of orthogonal instanton spaces and the K-theoretic Nekrasov partition functions

Jaeyoo Choy ¹

Dept. Math., Kyungpook Nat'l Univ., Sangyuk-dong, Buk-gu, Daegu 702-701, Republic of Korea

ARTICLE INFO

Article history: Received 17 July 2017 Accepted 23 March 2018 Communicated by Roman Bezrukavnikov

On the occasion of Professor Hiraku Nakajima's fifty-fifth birthday

MSC: 14D21 81T13

Keywords:
Moduli spaces
Orthogonal instantons
Quiver variety
Hamiltonian reduction
Nekrasov partition function
Equivariant K-group

ABSTRACT

Let \mathcal{M}_n^K be the moduli space of framed K-instantons over S^4 with instanton number n when K is a compact simple Lie group of classical type. Let \mathcal{U}_n^K be the Uhlenbeck partial compactification of \mathcal{M}_n^K . A scheme structure on \mathcal{U}_n^K is endowed by Donaldson as an algebro-geometric Hamiltonian reduction of ADHM data. In this paper, for $K = \mathrm{SO}(N, \mathbb{R}), \ N \geq 5$, we prove that \mathcal{U}_n^K is an irreducible normal variety with smooth locus \mathcal{M}_n^K . Hence, together with the author's previous results on $\mathrm{USp}(N)$, the K-theoretic Nekrasov partition function for any simple classical group other than $\mathrm{SO}(3,\mathbb{R})$, is interpreted as a generating function of Hilbert series of the instanton moduli spaces.

Using this approach we also study the case $K = SO(4, \mathbb{R})$ which is the unique semisimple but non-simple classical group. \bigcirc 2018 Elsevier Inc. All rights reserved.

Contents

E-mail addresses: choy@knu.ac.kr, jaeyoochoy@gmail.com.

¹ The author was partially supported by JSPS Ronpaku fellowship.

2.	Moment	maps μ for SO-data and the proof of Theorem 1.1	771
3.	Flatness	of μ via modality: proof of Lemma 2.2	783
4.	Normali	ty of $\mu^{-1}(0)$: proof of Lemma 2.10	793
5.	Variants	of Lemma 2.2 for various ADHM data	798
Apper	ndix A.	Normality of $\mu^{-1}(0)$ via base change argument	801
Apper	ndix B.	Tensor product commutes with factorization: proof of Theorem 2.11	801
Apper	ndix C.	Nilpotent symmetric matrices	806
Refere	ences		807

1. Introduction

Let K be a compact classical group. The K-theoretic Nekrasov partition function is defined by Nekrasov and Shadchin as the formal sum of the equivariant integrations of K-theory classes on the ADHM quiver representation space associated to K-instantons [38]. Our previous result [11] says that it is the generating function of the Hilbert series of the coordinate rings of the framed K-instanton moduli spaces \mathcal{M}_n^K over all instanton numbers n if $K = \mathrm{USp}(N/2)$ the real symplectic group where $N \in 2\mathbb{Z}_{\geq 0}$. We aim to prove the parallel result for $K = \mathrm{SO}(N, \mathbb{R})$. Note that such a result has been known for $K = \mathrm{SU}(N)$ essentially due to Crawley-Boevey [14].

1.1. Main result

We state the main result of the paper in this subsection. For the purpose we need to describe the ADHM data of instantons following Donaldson's argument [15]. First we consider the vector space \mathbf{M} of ordinary ADHM quiver representations coming from framed $\mathrm{SU}(N)$ -instantons with instanton number k. It is given as $\mathbf{M} = \mathrm{End}(V)^{\oplus 2} \oplus \mathrm{Hom}(W,V) \oplus \mathrm{Hom}(V,W)$. \mathbf{M} is a cotangent space, hence naturally a symplectic vector space. The adjoint $\mathrm{GL}(V)$ -action preserves the symplectic structure.

We fix an instanton number n. Let k=2n,4n or n according to $K=\mathrm{SO}(N,\mathbb{R})$ $(N\geq 4),\,\mathrm{SO}(3,\mathbb{R})$ or $\mathrm{USp}(N/2)$. Let

$$G := \begin{cases} \operatorname{Sp}(n) & \text{if } K = \operatorname{SO}(N, \mathbb{R}) \text{ with } N \geq 4 \\ \operatorname{Sp}(2n) & \text{if } K = \operatorname{SO}(3, \mathbb{R}) \\ \operatorname{O}(n) & \text{if } K = \operatorname{USp}(N/2) \text{ with } N \in 2\mathbb{Z}_{\geq 0}. \end{cases}$$

Let V, W be the vector representations of $G, K_{\mathbb{C}}$ respectively. We define a symplectic subspace of M as

$$\mathbf{N} := \mathbf{N}_{V,W} := \{ (B_1, B_2, i, j) \in \mathbf{M} | B_1 = B_1^*, B_2 = B_2^*, j = i^* \}$$

Download English Version:

https://daneshyari.com/en/article/8904844

Download Persian Version:

https://daneshyari.com/article/8904844

<u>Daneshyari.com</u>