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We introduce a new dimension spectrum motivated by the 
Assouad dimension; a familiar notion of dimension which, for 
a given metric space, returns the minimal exponent α � 0 such 
that for any pair of scales 0 < r < R, any ball of radius R may 
be covered by a constant times (R/r)α balls of radius r. To 
each θ ∈ (0, 1), we associate the appropriate analogue of the 
Assouad dimension with the restriction that the two scales 
r and R used in the definition satisfy logR/ log r = θ. The 
resulting ‘dimension spectrum’ (as a function of θ) thus gives 
finer geometric information regarding the scaling structure of 
the space and, in some precise sense, interpolates between the 
upper box dimension and the Assouad dimension. This latter 
point is particularly useful because the spectrum is generally 
better behaved than the Assouad dimension. We also consider 
the corresponding ‘lower spectrum’, motivated by the lower 
dimension, which acts as a dual to the Assouad spectrum.
We conduct a detailed study of these dimension spectra; in-
cluding analytic, geometric, and measureability properties. 
We also compute the spectra explicitly for some common 
examples of fractals including decreasing sequences with de-
creasing gaps and spirals with sub-exponential and monotonic 
winding. We also give several applications of our results, in-

✩ The work of JMF was partially supported by the Leverhulme Trust Research Fellowship (RF-2016-500). 
This work began while both authors were at the University of Manchester and they are grateful for the 
inspiring atmosphere they enjoyed during their time there. They are also grateful to Chris Miller for posing 
interesting questions.
* Corresponding author.

E-mail addresses: jmf32 @st -andrews .ac .uk (J.M. Fraser), hy25 @st -andrews .ac .uk (H. Yu).
URLs: http://www .mcs .st -and .ac .uk /~jmf32/ (J.M. Fraser), http://www .mcs .st -and .ac .uk /~hy25/

(H. Yu).

https://doi.org/10.1016/j.aim.2017.12.019
0001-8708/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.aim.2017.12.019
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aim
mailto:jmf32@st-andrews.ac.uk
mailto:hy25@st-andrews.ac.uk
http://www.mcs.st-and.ac.uk/~jmf32/
http://www.mcs.st-and.ac.uk/~hy25/
https://doi.org/10.1016/j.aim.2017.12.019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aim.2017.12.019&domain=pdf


274 J.M. Fraser, H. Yu / Advances in Mathematics 329 (2018) 273–328

cluding: dimension distortion estimates under bi-Hölder maps 
for Assouad dimension and the provision of new bi-Lipschitz 
invariants.

© 2018 Elsevier Inc. All rights reserved.
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1. New dimension spectra, summary of results, and organisation of paper

The Assouad dimension is a fundamental notion of dimension used to study fractal 
objects in a wide variety of contexts. It was popularised by Assouad in the 1970s [2,
3] and subsequently took on significant importance in embedding theory. Recall the 
famous Assouad Embedding Theorem which states that if (X, d) is a metric space with 
the doubling property (equivalently, with finite Assouad dimension), then (X, dε) admits 
a bi-Lipschitz embedding into some finite dimensional Euclidean space for any ε ∈ (0, 1). 
The notion we now call Assouad dimension does go back further, however, to Larman’s 
work in the 1960s [28,29] and even to Bouligand’s 1928 paper [4]. It is also worth noting 
that, due to its deep connections with tangents (see [37]), it is intimately related to 
pioneering work of Furstenberg on micro-sets which goes back to the 1960s, see [18]. 
Roughly speaking, the Assouad dimension assigns a number to a given metric space 
which quantifies the most difficult location and scale at which to cover the space. More 
precisely, it considers two scales 0 < r < R and finds the maximal exponential growth 
rate of N(B(x, R), r) as R and r decrease, where N(E, r) is the minimal number of 
r-balls required to cover a set E.

The Assouad dimension has found important applications in a wide variety of con-
texts, including a sustained importance in embedding theory, see [46,42,43]. It is also 
central to quasi-conformal geometry, see [20,48,37], and has recently been gaining sig-
nificant attention in the literature on fractal geometry and geometric measure theory, 
see for example [36,35,12,13,23,24,31]. However, its application and interest does not end 
there. For example, in the study of fractional Hardy inequalities, if the boundary of a 
domain in Rd has Assouad dimension less than or equal to d −p, then the domain admits 
the fractional p-Hardy inequality, see [1,27,32]. Also, Hieronymi and Miller have recently 
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