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It is shown that every continuous valuation defined on 
n-dimensional star bodies has an integral representation in 
terms of the radial function. Our argument is based on 
the non-trivial fact that continuous valuations are uniformly 
continuous on bounded sets. We also characterize continuous 
valuations on the n-dimensional star bodies that arise as 
restriction of a measure on Rn.
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1. Introduction

A valuation is a function V , defined on a given class of sets F , which satisfies that, 
for every A, B ∈ F such that A ∪B, A ∩B ∈ F , one has

V (A ∪B) + V (A ∩B) = V (A) + V (B).

Valuations can be thought of as a certain generalization of the notion of measure, and 
have become a relevant area of study in convex geometry. For instance, volume, surface 
area, and Euler characteristic are distinguished examples of valuations (in the appropri-
ate classes of sets). Historically, valuations were an essential tool in M. Dehn’s solution to 
Hilbert’s third problem, asking whether an elementary definition for volume of polytopes 
was possible.

The celebrated theorem of H. Hadwiger characterizes continuous rotation and trans-
lation invariant valuations on convex bodies as linear combinations of the quermassin-
tegrals [14]. More recently, S. Alesker provided the characterization of those valuations 
which are only rotation invariant [1], as well as those which are only translation invari-
ant [2]. We refer to [1,2,20–22] for a broad vision on the role of valuations in convex 
geometry. Recent developments in valuation theory and its connections with other areas 
of mathematics can also be found in [3].

Valuations on convex bodies are intimately related to the classical Brunn–Minkowski 
theory. In [23], E. Lutwak introduced and developed a dual version of Brunn–Minkowski 
theory: in this context, convex bodies, Minkowski addition and Hausdorff metric are 
replaced by star bodies, radial addition and radial metric, respectively. These have played 
an important role in the solution of the well-known Busemann–Petty problem [12,13,28], 
and have become a fundamental area of research [16,24,25]. D. A. Klain initiated in [18], 
[19] the study of rotationally invariant valuations on a specific class of star-shaped sets, 
namely those whose radial functions are n-th power integrable.

In this work we characterize radial continuous valuations on Sn
0 , the star bodies of Rn

(i.e. star sets with continuous radial function), in terms of an integral representation.
Let R+ := [0, +∞). Our main result is

Theorem 1.1. V : Sn
0 −→ R is a radial continuous valuation if and only if there exist a 

finite Borel measure μ on Sn−1 and a function K : R+ × Sn−1 → R such that

(a) K satisfies the strong Carathéodory condition (i.e., for each s ∈ R+ the function 
K(s, ·) is Borel measurable, and for μ-almost every t ∈ Sn−1 the function K(·, t) is 
continuous),

(b) for every λ > 0 there is Gλ ∈ L1(μ) such that K(s, t) ≤ Gλ(t) for s < λ and 
μ-almost every t ∈ Sn−1,
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