
Advances in Mathematics 329 (2018) 487–522

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Livsic-type determinantal representations and 

hyperbolicity ✩

E. Shamovich ∗,1, V. Vinnikov
Department of Mathematics, Ben-Gurion University of the Negev, Israel

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 October 2014
Received in revised form 20 April 
2016
Accepted 29 June 2016
Available online xxxx
Communicated by Dan Voiculescu

Keywords:
Hyperbolic polynomials
Hyperbolicity cones
Hyperbolic subvarieties in the 
projective space
Determinantal representations
Convexity in the Grassmanian
Cauchy kernels on a compact 
Riemann surface
Bezoutian on a compact Riemann 
surface
Real Riemann surfaces of dividing 
type

Hyperbolic homogeneous polynomials with real coefficients, 
i.e., hyperbolic real projective hypersurfaces, and their de-
terminantal representations, play a key role in the emerging 
field of convex algebraic geometry. In this paper we con-
sider a natural notion of hyperbolicity for a real subvariety 
X ⊂ Pd of an arbitrary codimension � with respect to a 
real � − 1-dimensional linear subspace V ⊂ Pd and study its 
basic properties. We also consider a class of determinantal 
representations that we call Livsic-type and a nice subclass of 
these that we call very reasonable. Much like in the case of 
hypersurfaces (� = 1), the existence of a definite Hermitian 
very reasonable Livsic-type determinantal representation im-
plies hyperbolicity. We show that every curve admits a very 
reasonable Livsic-type determinantal representation. Our ba-
sic tools are Cauchy kernels for line bundles and the notion 
of the Bezoutian for two meromorphic functions on a com-
pact Riemann surface that we introduce. We then proceed to 
show that every real curve in Pd hyperbolic with respect to 
some real d − 2-dimensional linear subspace admits a definite 
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Hermitian, or even definite real symmetric, very reasonable 
Livsic-type determinantal representation.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The study of hyperbolic polynomials originated from the theory of partial differential 
equations. A linear partial differential equation with constant coefficients is called hy-
perbolic if there exists a ∈ P

d(R), such that the symbol p, considered as a homogeneous 
polynomial, satisfies p(a) �= 0 and for every t ∈ C we have that p(a +tx) = 0 only if t ∈ R

for every x ∈ P
d(R). This led Gärding [19,20] and Lax [32] to consider such polynomials 

and the hypersurfaces X(R) =
{
x ∈ P

d(R) : p(x) = 0
}

they define. In particular, Gärd-
ing proved in [20] that if p is hyperbolic with respect to a as above then the connected 
component C of a in Pd(R) \X(R) (with the classical topology) is convex, i.e., the cone 
over C in Rd+1 is a disjoint union of a convex cone and its negative. Furthermore, p
is hyperbolic with respect to any b in C (in the case when X is irreducible or X(R) is 
smooth, C simply consists of all b ∈ P

d(R) such that p is hyperbolic with respect to b). 
More precisely, the cone over the set C in Rd+1 has two connected components, each 
one a convex cone. During the last two decades these hyperbolicity cones came to play 
an important role in optimization and related fields [8,24,39]. Among other applications, 
hyperbolic polynomials played a key role in the recent proof by Marcus, Spielman and 
Srivastava of the Kadison–Singer conjecture in operator algebras [35].

A simple way to manufacture hyperbolic polynomials is to consider Hermitian matri-
ces A0, . . . Ad such that A0 > 0, and set p(x0, . . . , xd) = det

(∑d
j=0 xjAj

)
. Then since 

A0 > 0, we see easily (using the fact the eigenvalues of a Hermitian matrix are real) 
that p is hyperbolic with respect to (1 : 0 : . . . : 0). Furthermore, the connected com-
ponent of (1, 0, . . . , 0) in {x ∈ R

d+1 : p(x) �= 0} is given by the linear matrix inequality ∑d
j=0 xjAj > 0, i.e., the hyperbolicity cone is a spectrahedral cone [38] which is the fea-

sible set of a semidefinite program, see [36,37,43] as well as the recent survey volume [10]. 
In this case we say that p admits a definite Hermitian determinantal representation.

Using the correspondence between determinantal representations and kernel line bun-
dles [44] that goes in its essence back to Dixon [15], and a detailed analysis of the real 
structure of the corresponding Jacobian variety, it was shown by the second author 
in [45] that for a smooth real hyperbolic curve in P2, definite determinantal representa-
tions are parametrized by points on a certain distinguished real torus in the Jacobian. 
In particular, every smooth real hyperbolic curve in P2 admits a definite determinan-
tal representation, a fact established previously by Dubrovin [16]. A technique using 
the Cauchy kernels for vector bundles was developed in [7] (following [6]) to provide a 
construction of determinantal representations for any plane algebraic curve. This tech-
nique was later used by Helton and the second author in [28] to prove that every real 
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