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We study the complexity with respect to Borel reducibility 
of the relations of isometry and isometric embeddability 
between ultrametric Polish spaces for which a set D of possible 
distances is fixed in advance. These are, respectively, an 
analytic equivalence relation and an analytic quasi-order and 
we show that their complexity depends only on the order 
type of D. When D contains a decreasing sequence, isometry 
is Borel bireducible with countable graph isomorphism and 
isometric embeddability has maximal complexity among 
analytic quasi-orders. If D is well-ordered the situation is 
more complex: for isometry we have an increasing sequence 
of Borel equivalence relations of length ω1 which are cofinal 
among Borel equivalence relations classifiable by countable 
structures, while for isometric embeddability we have an 
increasing sequence of analytic quasi-orders of length at least 
ω + 3.
We then apply our results to solve various open problems 
in the literature. For instance, we answer a long-standing 
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question of Gao and Kechris by showing that the relation of 
isometry on locally compact ultrametric Polish spaces is Borel 
bireducible with countable graph isomorphism.

© 2018 Elsevier Inc. All rights reserved.
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1. Introduction

A common problem in mathematics is to classify interesting objects up to some nat-
ural notion of equivalence. More precisely, one considers a class of objects X and an 
equivalence relation E on X, and tries to find a set of complete invariants I for (X, E). 
To be of any use, such an assignment of invariants should be as simple as possible. In 
most cases, both X and I carry some intrinsic Borel structures, so that it is natural to 
ask the assignment to be a Borel measurable map.

A classical example is the problem of classifying separable complete metric spaces, 
called Polish metric spaces, up to isometry. In [13] Gromov showed for instance that one 
can classify compact Polish metric spaces using (essentially) elements of R as complete 
invariants; in modern terminology, we say that the corresponding classification problem 
is smooth. However, as pointed out by Vershik in [28] the problem of classifying arbitrary 
Polish metric spaces is “an enormous task”, in particular it is far from being smooth. 
Thus it is natural to ask how complicated is such a classification problem.

A natural tool for studying the complexity of classification problems is the notion 
of Borel reducibility introduced in [7] and in [14]: we say that a classification problem 
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