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This paper studies a large class of continuous functions f :
[0, 1] → R

d whose range is the attractor of an iterated func-
tion system {S1, . . . , Sm} consisting of similitudes. This class 
includes such classical examples as Pólya’s space-filling curves, 
the Riesz–Nagy singular functions and Okamoto’s functions. 
The differentiability of f is completely classified in terms of 
the contraction ratios of the maps S1, . . . , Sm. Generalizing 
results of Lax (1973) and Okamoto (2006), it is shown that ei-
ther (i) f is nowhere differentiable; (ii) f is non-differentiable 
almost everywhere but with uncountably many exceptions; 
or (iii) f is differentiable almost everywhere but with un-
countably many exceptions. The Hausdorff dimension of the 
exceptional sets in cases (ii) and (iii) above is calculated, and 
more generally, the complete multifractal spectrum of f is 
determined.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In 1973, P. Lax [18] proved a remarkable theorem about the differentiability of Pólya’s 
space-filling curve, which maps a closed interval continuously onto a solid right triangle. 
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Unlike the space-filling curves of Peano and Hilbert, which had been known to be nowhere 
differentiable, Lax found that the differentiability of the Pólya curve depends on the value 
of the smallest acute angle θ of the triangle. (Roughly speaking, the larger the angle, the 
less differentiable the function is; see Example 2.3 below.)

More than 30 years later, H. Okamoto [23] introduced a one-parameter family of 
self-affine functions that includes the Cantor function as well as functions previously 
studied by Perkins [24] and Katsuura [15]. Okamoto showed that the differentiability 
of his functions depends on the parameter a ∈ (0, 1) in much the same way as the 
differentiability of the Pólya curve depends on the angle θ (though it is not clear whether 
Okamoto was aware of Lax’s result). See Example 2.4 below.

While Okamoto’s function and the Pólya curve are not directly related, both can be 
viewed as special cases of a large class of self-affine functions. The aim of this article is 
to study the differentiability of this class of functions, thereby generalizing the results of 
Lax and Okamoto, and to determine their finer local regularity behavior in the form of 
the pointwise Hölder spectrum.

Our class of functions is a subclass of that considered in [4] and may be described 
as follows. Fix d ∈ N, an integer m ≥ 2, and points a, b ∈ R

d with |a − b| = 1. 
(Without loss of generality we take a = (0, 0, . . . , 0) and b = (1, 0, . . . , 0).) Fix a vector 
ε = (ε1, . . . , εm) ∈ {0, 1}m. Let S1, . . . , Sm be contractive similitudes in Rd satisfying 
the “connectivity conditions”

S1
(
(1 − ε1)a + ε1b

)
= a, (1.1)

Sm

(
εma + (1 − εm)b

)
= b, (1.2)

Si−1
(
εi−1a + (1 − εi−1)b

)
= Si((1 − εi)a + εib

)
, i = 2, . . . ,m. (1.3)

Put λi := Lip(Si). If m ≥ 3, we allow one or more of the Si to be constant, so λi = 0.
Let c1, . . . , cm be positive numbers with 

∑m
i=1 ci = 1. Put σi :=

∑i−1
j=1 cj + εici for 

i, . . . , m, and define the maps

φi(t) := (−1)εicit + σi, i = 1, . . . ,m,

so φi maps [0, 1] linearly onto a closed interval Ii of length ci, and the intervals I1, . . . , Im
are nonoverlapping with 

⋃m
i=1 Ii = [0, 1]. By a theorem of de Rham [26], there exists a 

unique continuous function f : [0, 1] → R
d satisfying the functional equation

f(t) = Si

(
f(φ−1

i (t)
)
, t ∈ Ii, i = 1, . . . ,m. (1.4)

Following [4], we shall call ε the signature of f . The image Γ := f([0, 1]) is a connected, 
self-similar curve in Rd satisfying Γ =

⋃m
i=1 Si(Γ). Note that (1.1)–(1.3) imply that ∑m

i=1 λi ≥ 1. To avoid degenerate cases, we shall assume throughout that

(λ1, . . . , λm) �= (c1, . . . , cm). (1.5)
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