

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Stratification of free boundary points for a two-phase variational problem *

Serena Dipierro ^{a,*}, Aram L. Karakhanyan ^b

- ^a Dipartimento di Matematica "Federigo Enriques", Università di Milano, Via Cesare Saldini 50, 20133 Milano, Italy
- ^b Maxwell Institute for Mathematical Sciences and School of Mathematics, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom

ARTICLE INFO

Article history:
Received 24 May 2017
Received in revised form 23
December 2017
Accepted 24 December 2017
Available online xxxx
Communicated by O. Savin

MSC: primary 35R35, 35J92

Keywords:
Free boundary regularity
Two phase
p-Laplace
Monotonicity formula
Partial regularity

ABSTRACT

In this paper we prove the local Lipschitz regularity of the minimizers of the two-phase Bernoulli type free boundary problem arising from the minimization of the functional

$$J(u) := \int\limits_{\Omega} |\nabla u|^p + \lambda_+^p \, \chi_{\{u > 0\}} + \lambda_-^p \, \chi_{\{u \le 0\}}, \quad 1$$

Here $\Omega\subset\mathbb{R}^N$ is a bounded smooth domain and λ_\pm are positive constants such that $\lambda_+^p-\lambda_-^p>0$. Furthermore, we show that for p>1 the free boundary has locally finite perimeter and the set of non-smooth points of the free boundary is of zero (N-1)-dimensional Hausdorff measure. For this, our approach is new even for the classical case p=2. © 2018 Elsevier Inc. All rights reserved.

 $^{^{\,\}pm}$ The first author was partially supported by EPSRC grant EP/K024566/1, Alexander von Humboldt Foundation and GNAMPA. The second author was partially supported by EPSRC grant EP/K024566/1.

^{*} Corresponding author.

 $[\]label{eq:continuity} \textit{E-mail addresses: } \textbf{serena.dipierro@unimi.it (S. Dipierro), aram.karakhanyan@ed.ac.uk} \ (A.L. Karakhanyan).$

Contents

1.	Introduction	41
2.	Main results	43
	2.1. Setup	43
	2.2. Strategy of the proofs	44
	2.3. Structure of the paper	45
3.	Some properties of minimizers	46
	3.1. A BMO estimate for ∇u	46
	3.2. Some known properties of u	50
	3.3. The volume term and scaling	50
	3.4. Strong non-degeneracy	51
	3.5. One phase control implies linear growth	55
4.	Viscosity solutions	57
5.	On ε -monotonicity of u and slab flatness of $\partial \{u > 0\}$	61
6.	Linear growth vs. flatness: Proof of Proposition 2.1	62
	6.1. Dyadic scaling and slab flatness	62
	6.2. Flatness via ε -monotonicity	65
	6.3. Proof of Proposition 2.1	67
7.	Proof of Theorem A	68
	7.1. Alt-Caffarelli-Friedman functional	69
8.	Partial regularity: Proof of Theorem B	70
9.	Blow-up sequence of u, end of proof of Theorem B	75
Apper	endix A. Viscosity solutions and linear development	77
Refere	rences	80

1. Introduction

In this paper we study the local minimizers of

$$J(u) := \int_{\Omega} |\nabla u|^p + \lambda_+^p \chi_{\{u>0\}} + \lambda_-^p \chi_{\{u\leq0\}}, \quad u \in \mathcal{A},$$
 (1.1)

where Ω is a bounded and smooth domain in \mathbb{R}^N , χ_D is the characteristic function of the set $D \subset \mathbb{R}^N$, and λ_{\pm} are positive constants such that

$$\Lambda := \lambda_+^p - \lambda_-^p > 0. \tag{1.2}$$

The class of admissible functions A is defined as follows

$$A := \{ u \in W^{1,p}(\Omega) : u - g \in W_0^{1,p}(\Omega), \text{ with } 1$$

and $g \in W^{1,p}(\Omega)$ is a given boundary datum.

This type of problems arise in jet flow models with two ideal fluids, see e.g. [4] and [20] p. 126, and have been studied in [1] for p=2. When the velocity \mathbf{v} of the planar flow depends on the gradient of the stream function u through the power law $\mathbf{v} = |\nabla u|^{p-2} \nabla u$ (see [3]), then the resulted steady state problem admits a variational formulation with

Download English Version:

https://daneshyari.com/en/article/8904906

Download Persian Version:

https://daneshyari.com/article/8904906

<u>Daneshyari.com</u>