Classification of nonnegative classical solutions to third-order equations

Wei Dai ${ }^{*, 1}$, Guolin Qin
School of Mathematics and Systems Science, Beihang University (BUAA), Beijing 100083, PR China

A R T I C L E I N F O

Article history:

Received 29 October 2017
Received in revised form 30 January 2018
Accepted 5 February 2018
Available online xxxx
Communicated by Erwin Lutwak

MSC:

primary 35 R11
secondary $35 \mathrm{~J} 91,35 \mathrm{~B} 06$
Keywords:
Fractional Laplacians
Odd order
Positive classical solutions
Radial symmetry
Uniqueness
Liouville theorems

Abstract

In this paper, we are concerned with the third-order equations (1.1) and (1.11) with critical or subcritical nonlinearities. By applying the method of moving planes to the third-order PDEs (1.1) and (1.11), we prove that nonnegative classical solutions u to (1.1) and (1.11) are radially symmetric about some point $x_{0} \in \mathbb{R}^{n}$ and derive the explicit forms for u in the critical case. We also prove the non-existence of nontrivial nonnegative classical solutions in the subcritical cases (see Theorem 1.1 and Theorem 1.3).

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we mainly consider the nonnegative classical solutions to the following third-order equation with critical or subcritical nonlinearities

[^0]\[

\left\{$$
\begin{array}{l}
(-\Delta)^{\frac{3}{2}} u(x)=u^{p}(x), \quad x \in \mathbb{R}^{n}, \tag{1.1}\\
u \in C_{l o c}^{3, \epsilon} \cap \mathcal{L}_{1}\left(\mathbb{R}^{n}\right), \quad u(x) \geq 0, \quad x \in \mathbb{R}^{n},
\end{array}
$$\right.
\]

where $n \geq 4,1 \leq p \leq \frac{n+3}{n-3}, \epsilon>0$ is arbitrarily small and the fractional Laplacian $(-\Delta)^{\frac{3}{2}}:=(-\Delta)(-\Delta)^{\frac{1}{2}}$. For any $u \in C_{\text {loc }}^{1, \epsilon}\left(\mathbb{R}^{n}\right) \cap \mathcal{L}_{1}\left(\mathbb{R}^{n}\right)$, the nonlocal operator $(-\Delta)^{\frac{1}{2}}$ is defined by (see [9,10,15,27,33])

$$
\begin{equation*}
(-\Delta)^{\frac{1}{2}} u(x)=C_{n} P . V . \int_{\mathbb{R}^{n}} \frac{u(x)-u(y)}{|x-y|^{n+1}} d y:=C_{n} \lim _{\varepsilon \rightarrow 0} \int_{|y-x| \geq \varepsilon} \frac{u(x)-u(y)}{|x-y|^{n+1}} d y \tag{1.2}
\end{equation*}
$$

where the constant $C_{n}=\left(\int_{\mathbb{R}^{n}} \frac{1-\cos \left(2 \pi \zeta_{1}\right)}{|\zeta|^{n+1}} d \zeta\right)^{-1}$ and the function space

$$
\begin{equation*}
\mathcal{L}_{1}\left(\mathbb{R}^{n}\right):=\left\{u: \mathbb{R}^{n} \rightarrow \mathbb{R} \left\lvert\, \int_{\mathbb{R}^{n}} \frac{|u(x)|}{1+|x|^{n+1}} d x<\infty\right.\right\} \tag{1.3}
\end{equation*}
$$

The definition (1.2) of the fractional Laplacian $(-\Delta)^{\frac{1}{2}}$ can also be extended further to distributions in the space $\mathcal{L}_{1}\left(\mathbb{R}^{n}\right)$ by

$$
\left\langle(-\Delta)^{\frac{1}{2}} u, \phi\right\rangle=\int_{\mathbb{R}^{n}} u(x)(-\Delta)^{\frac{1}{2}} \phi(x) d x, \quad \forall \phi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)
$$

The fractional Laplacian $(-\Delta)^{\frac{1}{2}}$ can also be defined equivalently (see [12]) by Caffarelli and Silvestre's extension method (see [1]) for $u \in C_{l o c}^{1, \epsilon}\left(\mathbb{R}^{n}\right) \cap \mathcal{L}_{1}\left(\mathbb{R}^{n}\right)$, that is,

$$
\begin{equation*}
(-\Delta)^{\frac{1}{2}} u(x):=-C_{n} \lim _{y \rightarrow 0+} \frac{\partial U(x, y)}{\partial y}=-C_{n} \lim _{y \rightarrow 0+} \int_{\mathbb{R}^{n}} \frac{|x-\xi|^{2}-n y^{2}}{\left(|x-\xi|^{2}+y^{2}\right)^{\frac{n+3}{2}}} u(\xi) d \xi \tag{1.4}
\end{equation*}
$$

where $U(x, y)$ is the harmonic extension of $u(x)$ in $\mathbb{R}_{+}^{n+1}=\left\{(x, y) \mid x \in \mathbb{R}^{n}, y \geq 0\right\}$. Throughout this paper, we define $(-\Delta)^{\frac{3}{2}} u:=(-\Delta)(-\Delta)^{\frac{1}{2}} u$ for $u \in C_{\text {loc }}^{3, \epsilon}\left(\mathbb{R}^{n}\right) \cap \mathcal{L}_{1}\left(\mathbb{R}^{n}\right)$, where $(-\Delta)^{\frac{1}{2}} u$ is defined by definition (1.2) and its equivalent definition (1.4). Due to the nonlocal feature of $(-\Delta)^{\frac{1}{2}}$, we need the assumption $u \in C_{l o c}^{3, \epsilon}\left(\mathbb{R}^{n}\right)$ with arbitrarily small $\epsilon>0$ (merely $u \in C^{3}$ is not enough) to guarantee that $(-\Delta)^{\frac{1}{2}} u \in C^{2}\left(\mathbb{R}^{n}\right)$ (see $[12,27])$, and hence u is a classical solution to equation (1.1) in the sense that $(-\Delta)^{\frac{3}{2}} u$ is pointwise well defined and continuous in the whole \mathbb{R}^{n}.

The equation (1.1) is closely related to the following integral equation

$$
\begin{equation*}
u(x)=\int_{\mathbb{R}^{n}} \frac{R_{3, n}}{|x-y|^{n-3}} u^{p}(y) d y \tag{1.5}
\end{equation*}
$$

where the Riesz potential's constants $R_{\alpha, n}:=\frac{\Gamma\left(\frac{n-\alpha}{2}\right)}{\pi^{\frac{n}{2}} 2^{\alpha} \Gamma\left(\frac{\alpha}{2}\right)}$ for $0<\alpha<n$ (see [28]). When $p=\frac{n+3}{n-3}$, we say the conformally invariant equation (1.1) is $\dot{H}^{\frac{3}{2}}$-critical in the sense

https://daneshyari.com/en/article/8904933

Download Persian Version:
https://daneshyari.com/article/8904933

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: weidai@buaa.edu.cn (W. Dai), qinbuaa@foxmail.com (G. Qin).
 ${ }^{1}$ W. Dai was supported by the NNSF of China (No. 11501021).

