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The proof of Theorem 1.6 in the above paper contains a gap. In general, the continuity 
of the map S stated in Lemma 5.8 may fail. This error was inherited from our earlier 
work [28, Theorem 3.4], which has now been corrected in the erratum [2].

The purpose of this note is to fix this gap following the main idea of [2]. We shall use 
the same notation as in the paper. Given a nonnegative locally finite measure ν in Rn, 
we define its first order Riesz’s potentials by

Iρ1ν(x) =
ρ∫

0

ν(Bt(x))
tn−1

dt

t
, x ∈ R

n, (0.1)

where ρ ∈ (0, ∞]. When ρ = ∞, we write I1ν instead of I∞1 ν and note that in this case 
we have

I1ν(x) = c(n)
∫
Rn

1
|x− y|n−1 dν(y), x ∈ R

n.

In what follows, given a finite signed measure in Ω we will tacitly extend it by zero 
to Rn \ Ω. Also, recall that the space M1, q

q−p+1 (Ω) is defined in Definition 5.5.
Let M = M(n) ≥ 1 be a constant such that

sup
r>0

1
|Br(x)|

∫
Br(x)

I1(f)(y)dy ≤ M I1(f)(x), x ∈ R
n, (0.2)

for all f ∈ L1
loc(Rn), f ≥ 0. Inequality (0.2) follows from an application of Fubini’s 

Theorem and the fact the function x �→ |x|1−n is an A1 weight. By an A1 weight we 
mean a nonnegative function w ∈ L1

loc(Rn), w �≡ 0, such that

sup
r>0

1
|B(x, r)|

∫
B(x,r)

w(y)dy ≤ C w(x), a.e. x ∈ R
n,

for a constant C > 0. The least possible value of C will be denoted by [w]A1 and is called 
the A1 constant of w. It is well-known that A1 ⊂ A∞.

With R = diam(Ω), for each measure ω ∈ M1, q
q−p+1 (Ω) we define the set

E1(ω) :=
{
v ∈ W 1,q

0 (Ω) :
∫
Ω

|∇v|qwdx ≤ T1

∫
Ω

I2R
1 (|ω|)

q
p−1wdx

for all w ∈ A1 ∩ L∞(Rn) such that [w]A1 ≤ M
}
.
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