ARTICLE IN PRESS

YAIMA:5898

Advances in Mathematics ••• (••••) •••-•••

Special representations of Weyl groups: A positivity property

G. Lusztig¹

Department of Mathematics, M.I.T., Cambridge, MA 02139, United States

ARTICLE INFO

Article history: Available online xxxx

Dedicated to David Kazhdan on the occasion of his 70th birthday

Keywords: Weyl group Perron line Special representation ABSTRACT

The special representations of a Weyl group W were introduced by the author in 1978. In this paper we show that the special representations of W, when viewed as representations of the corresponding J-ring, are characterized by a positivity property.

© 2017 Elsevier Inc. All rights reserved.

0. Introduction

Let W be an irreducible Weyl group with length function $l : W \longrightarrow \mathbf{N}$ and let $S = \{s \in W; l(s) = 1\}$. Let IrrW be a set of representatives for the isomorphism classes of irreducible representations of W (over \mathbf{C}). In [7] a certain subset of IrrW was defined. The representations in this subset were later called *special representations*; they play a key role in the classification of unipotent representations of a reductive group over a finite field \mathbf{F}_q for which W is the Weyl group. (The definition of special representations is reviewed in 3.1.)

 $\label{eq:http://dx.doi.org/10.1016/j.aim.2017.06.015} 0001-8708 \\ \ensuremath{\oslash} \ensuremath{\odot} \ensuremath{2017} \ensuremath{ Elsevier Inc. All rights reserved.}$

E-mail address: gyuri@math.mit.edu.

¹ Supported in part by National Science Foundation grant 1303060.

$\mathbf{2}$

ARTICLE IN PRESS

G. Lusztig / Advances in Mathematics ••• (••••) •••-•••

It will be convenient to replace irreducible representations of W with the corresponding simple modules of the asymptotic Hecke algebra \mathbf{J} (see [11, 18.3]) associated to Wvia the canonical isomorphism $\psi : \mathbf{C}[W] \xrightarrow{\sim} \mathbf{J}$ (see 3.1); let E_{∞} be the simple \mathbf{J} -module corresponding to $E \in \operatorname{Irr} W$ under ψ .

In this paper we show that a special representation E of W is characterized by the following positivity property of E_{∞} : there exists a **C**-basis of E_{∞} such that any element t_u in the standard basis of **J** acts in this basis through a matrix with all entries in $\mathbf{R}_{>0}$.

The fact that for a special representation E, E_{∞} has the positivity property above was pointed out (in the case where W is of classical type) in [14]. In this paper I will recall the argument of [14] (see 3.3) and I give two other proofs which apply for any W. One of these proofs (see 4.4) is based on the interpretation [9,1], of **J** (or, rather, its part attached to a fixed two-sided cell) in terms of G-equivariant vector bundles on $X \times X$ where X is a finite set with an action of a finite group G. Another proof (see Section 2) is based on the use of Perron's theorem for matrices with all entries in $\mathbf{R}_{>0}$. (Previously, Perron's theorem has been in used in the context of canonical bases in quantum groups in the study [10] of total positivity and, very recently, in the context of the canonical basis [4] of $\mathbf{C}[W]$, in [6]; in both cases the positivity properties of the appropriate canonical bases were used.) We also show that the Hecke algebra representation corresponding to a special representation E can be realized essentially by a W-graph (in the sense of [4]) in which all labels are natural numbers. Some of our results admit also an extension to the case of affine Weyl groups (see Section 5).

1. Statement of the main theorem

1.1. Let v be an indeterminate and let $\mathcal{A} = \mathbf{Z}[v, v^{-1}]$. Let \mathcal{H} be the Hecke algebra of W that is, the associative A-algebra with 1 with an A-basis $\{T_w; w \in W\}$ (where $T_1 = 1$) and with multiplication such that $T_w T_{w'} = T_{ww'}$ if l(ww') = l(w) + l(w') and $(T_s+1)(T_s-v^2)=0$ if $s \in S$. Let $\{c_w; w \in W\}$ be the \mathcal{A} -basis of \mathcal{H} denoted by $\{C'_w; w \in W\}$ in [4] (with $q = v^2$); see also [11, 5.2]. For example, if $s \in S$, we have $c_s = v^{-1}T_s + v^{-1}$. The left cells and two-sided cells of W are the equivalence classes for the relations \sim_L and \sim_{LR} on W defined in [4], see also [11, 8.1]; we shall write \sim instead of \sim_L . For x, y in W we have $c_x c_y = \sum_{z \in W} h_{x,y,z} c_z$ where $h_{x,y,z} \in \mathbf{N}[v, v^{-1}]$. As in [11, 13.6], for $z \in W$ we define $a(z) \in \mathbf{N}$ by $h_{x,y,z} \in v^{a(z)} \mathbf{Z}[v^{-1}]$ for all x, y in W and $h_{x,y,z} \notin v^{a(z)-1} \mathbf{Z}[v^{-1}]$ for some x, y in W. (For example, a(1) = 0 and a(s) = 1 if $s \in S$.) For x, y, z in W we have $h_{x,y,z} = \gamma_{x,y,z^{-1}} v^{a(z)} \mod v^{a(z)-1} \mathbf{Z}[v^{-1}]$ where $\gamma_{x,y,z^{-1}} \in \mathbf{N}$ is well defined. Let **J** be the **C**-vector space with basis $\{t_w; w \in W\}$. For x, y in W we set $t_x t_y = \sum_{z \in W} \gamma_{x,y,z^{-1}} t_z \in \mathbf{J}$. This defines a structure of associative **C**-algebra on **J** with unit element of the form $\sum_{d \in \mathcal{D}} t_d$ where \mathcal{D} is a certain subset of the set of involutions in W, see [11, 18.3]. For any subset X of W let \mathbf{J}_X be the subspace of **J** with basis $\{t_w; w \in X\}$; let \mathbf{J}_X^+ be the set of elements of the form $\sum_{w \in X} f_w t_w \in \mathbf{J}_X$ with $f_w \in \mathbf{R}_{>0}$ for all $w \in X$. We have $\mathbf{J} = \bigoplus_{\mathbf{c}} \mathbf{J}_{\mathbf{c}}$ where **c** runs over the two-sided cells of W. Each $\mathbf{J}_{\mathbf{c}}$

Download English Version:

https://daneshyari.com/en/article/8904961

Download Persian Version:

https://daneshyari.com/article/8904961

Daneshyari.com