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We study the rough bilinear singular integral, introduced by 
Coifman and Meyer [8],

TΩ(f, g)(x)

= p.v.
∫
Rn

∫
Rn

|(y, z)|−2nΩ((y, z)/|(y, z)|)f(x− y)g(x− z)dydz,

when Ω is a function in Lq(S2n−1) with vanishing integral 
and 2 ≤ q ≤ ∞. When q = ∞ we obtain boundedness for TΩ
from Lp1 (Rn) × Lp2(Rn) to Lp(Rn) when 1 < p1, p2 < ∞
and 1/p = 1/p1 + 1/p2. For q = 2 we obtain that TΩ is 
bounded from L2(Rn) × L2(Rn) to L1(Rn). For q between 2
and infinity we obtain the analogous boundedness on a set of 
indices around the point (1/2, 1/2, 1). To obtain our results 
we introduce a new bilinear technique based on tensor-type 
wavelet decompositions.
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1. Introduction

Singular integral theory was initiated in the seminal work of Calderón and Zyg-
mund [3]. The study of boundedness of rough singular integrals of convolution type 
has been an active area of research since the middle of the twentieth century. Calderón 
and Zygmund [4] first studied the rough singular integral

LΩ(f)(x) = p.v.
∫
Rn

Ω(y/|y|)
|y|n f(x− y) dy

where Ω is in L logL(Sn−1) with mean value zero and showed that LΩ is bounded on 
Lp(Rn) for 1 < p < ∞. The same conclusion under the less restrictive condition that 
Ω lies in H1(Sn−1) was obtained by Coifman and Weiss [10] and Connett [11]. The 
weak type (1, 1) boundedness of LΩ when n = 2 was established by Christ and Rubio 
de Francia [7] and independently by Hofmann [20], both inspired by Christ’s work [6]. 
Additionally, in unpublished work, Christ and Rubio de Francia extended this result to 
all dimensions n ≤ 7. The weak type (1, 1) property of LΩ was proved by Seeger [28]
in all dimensions and was later extended by Tao [30] to situations in which there is no 
Fourier transform structure. Several questions remain concerning the endpoint behavior 
of LΩ, such as if the condition Ω ∈ L logL(Sn−1) can be relaxed to Ω ∈ H1(Sn−1), or 
merely Ω ∈ L1(Sn−1) when Ω is an odd function. On the former there is a partial result 
of Stefanov [29] but not much is still known about the latter.

The bilinear counterpart of the rough singular integral linear theory is notably more in-
tricate. To fix notation, we fix 1 < q ≤ ∞ and we let Ω in Lq(S2n−1) with 

∫
S2n−1 Ω dσ = 0, 

where S2n−1 is the unit sphere in R2n. Coifman and Meyer [8] introduced the bilinear 
singular integral operator associated with Ω by

TΩ(f, g)(x) = p.v.
∫
Rn

∫
Rn

K(x− y, x− z)f(y)g(z) dydz, (1)

where f, g are functions in the Schwartz class S(Rn),

K(y, z) = Ω((y, z)′)/|(y, z)|2n ,
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