

Contents lists available at ScienceDirect

Advances in Mathematics

A remark on Gromov–Witten invariants of quintic threefold

Longting Wu

Beijing International Center for Mathematical Research, Peking University, China

ARTICLE INFO

Article history: Received 12 June 2017 Received in revised form 14 October 2017 Accepted 17 December 2017 Available online xxxx Communicated by the Managing Editors

Keywords:

Quintic threefold

Maulik-Pandharipande conjecture Relative Gromov-Witten invariants

ABSTRACT

The purpose of the article is to give a proof of a conjecture of Maulik and Pandharipande for genus 2 and 3. As a result, it gives a way to determine Gromov–Witten invariants of the quintic threefold for genus 2 and 3.

© 2017 Elsevier Inc. All rights reserved.

Contents

1.	Introduction	242
2.	Preliminaries	245
	2.1. Absolute Gromov–Witten invariants	245
	2.2. Relative Gromov–Witten invariants	245
	2.3. Degeneration formula	252
	2.4. Maulik—Pandharipande's algorithm	253
3.	Proof of main theorem	255
	3.1. Part I	255
	3.2. Part II	267
4.	Further discussion	301
Ackno	owledgments	302

E-mail address: longtingw@pku.edu.cn.

Appendix A.																								302
Appendix B.																								303
Appendix C.																								308
Appendix D.																								310
References																								312

1. Introduction

Let Q be the quintic threefold in \mathbb{P}^4 . $\mathbb{P}(N_{Q/\mathbb{P}^4} \oplus \mathcal{O}_Q)$ is the projective bundle associated to the vector bundle $N_{Q/\mathbb{P}^4} \oplus \mathcal{O}_Q$ over Q. D_0 is a divisor of $\mathbb{P}(N_{Q/\mathbb{P}^4} \oplus \mathcal{O}_Q)$ determined by the factor N_{Q/\mathbb{P}^4} .

Gathmann [12] used relative virtual localization technique to reduce some relative Gromov–Witten invariants of the pair $(\mathbb{P}(N_{Q/\mathbb{P}^4} \oplus \mathcal{O}_Q), D_0)$ to the absolute Gromov–Witten invariants of Q when genus $g \leq 1$. Combining it with degeneration formula (2.7), which relates Gromov–Witten invariants of \mathbb{P}^4 to relative invariants of the pairs (\mathbb{P}^4, Q) and $(\mathbb{P}(N_{Q/\mathbb{P}^4} \oplus \mathcal{O}_Q), D_0)$, he could recursively determine Gromov–Witten invariants of the quintic threefold $N_{g,d}$ (3.2) for genus $g \leq 1$. For a discussion of the history of computing Gromov–Witten invariants of quintic threefold, we recommend the reader to see [24], [26].

Later, Maulik and Pandharipande have found an algorithm (see [27], Theorem 1) to determine relative invariants of the pair $(\mathbb{P}(N_{Q/\mathbb{P}^4} \oplus \mathcal{O}_Q), D_0)$ from the absolute invariants of Q without the constraint of genus. Inspired by Gathmann's proposal, they proposed the following conjecture:

Conjecture 1.1 ([27]). The system of equations obtained from the degeneration formula (2.7) (set $(V, W) = (\mathbb{P}^4, Q)$ in the formula) and the Maulik-Pandharipande's algorithm (see Section 2.4 or [27], Theorem 1) can be used to determine both the relative theory of the pair (\mathbb{P}^4, Q) and the Gromov-Witten invariants $N_{g,d}$ of Q.

Remark 1.2. Conjecture 1.1 for g = 0, 1 directly follows from the idea of Gathmann. Maulik and Pandharipande have claimed in their paper that they have proven Conjecture 1.1 for genus 2, but they did not give a proof.

In this paper, we prove that

Theorem 1.3. The Conjecture 1.1 is true for q=2,3.

As a consequence of Theorem 1.3, it gives an algorithm to determine $N_{g,d}$ for g = 2, 3. Here, we do not claim any priority to the proof of Conjecture 1.1 for genus 2. We may owe it to Maulik and Pandharipande.

Remark 1.4. In the same paper [27], Maulik and Pandharipande also gave a calculation scheme to determine all $N_{g,d}$, which is different from the method of Conjecture 1.1. But

Download English Version:

https://daneshyari.com/en/article/8904995

Download Persian Version:

https://daneshyari.com/article/8904995

<u>Daneshyari.com</u>