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Given a constant magnetic field on Euclidean space Rp

determined by a skew-symmetric (p × p) matrix Θ, and a 
Zp-invariant probability measure μ on the disorder set Σ
which is by hypothesis a Cantor set, where the action is 
assumed to be minimal, the corresponding Integrated Density 
of States of any self-adjoint operator affiliated to the twisted 
crossed product algebra C(Σ) �σ Zp, where σ is the multiplier 
on Zp associated to Θ, takes on values on spectral gaps in the 
magnetic gap-labelling group. The magnetic frequency group
is defined as an explicit countable subgroup of R involving 
Pfaffians of Θ and its sub-matrices. We conjecture that the 
magnetic gap labelling group is a subgroup of the magnetic 
frequency group. We give evidence for the validity of our 
conjecture in 2D, 3D, the Jordan block diagonal case and the 
periodic case in all dimensions.
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1. Introduction

The gap-labelling theorem was originally conjectured by Bellissard [5] in the late 
1980s. It concerns the labelling of gaps in the spectrum of a Schrödinger operator (in 
the absence of a magnetic field) by the elements of a subgroup of R which results from 
pairing the K0-group of the noncommutative analog for the Brillouin zone with the 
tracial state defined by the probability measure on the hull. The problem arises in a 
mathematical version of solid state physics in the context of aperiodic tilings. Its three 
proofs, discovered independently by the authors of [15,28,6] all concern the proof of a 
statement in K-theory. Earlier results include the proof of the gap-labelling conjecture 
in 1D [7], 2D [8,49] and in 3D [9]. A more detailed account of the history of gap-labelling 
theorems can be found in Appendix B.

In the presence of a non-zero constant magnetic field in Euclidean space, the gap-
labelling conjecture is much trickier to state, even though it was known to be the more 
interesting problem in spectral theory and in condensed matter physics since the 1980s, 
cf. [4]. Here, we manage to give, for the first time, a precise formulation of conjectures 
for the magnetic gap-labelling group in all dimensions which encompass all previously 
known results. More precisely, in this paper we initiate the study of the gap-labelling 
group in the case of the magnetic Schrödinger operator on Euclidean space Rp with 
disorder set a Cantor set Σ under a non-zero magnetic field B = 1

2dx
tΘdx, where Θ

is a (p × p) skew-symmetric matrix. We believe that proving (or disproving) our con-
jectures would constitute an important step in the understanding of aperiodic tilings 
under a constant magnetic field. Given a Zp-invariant probability measure μ on Σ, the 
corresponding Integrated Density of States of any self-adjoint operator affiliated to the 
twisted crossed product algebra C(Σ) �σ Zp takes values on spectral gaps in an explicit 
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