

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Building blocks of polarized endomorphisms of normal projective varieties

Sheng Meng*, De-Qi Zhang

Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, Singapore 119076, Republic of Singapore

ARTICLE INFO

Article history:
Received 15 July 2016
Received in revised form 21
November 2017
Accepted 22 November 2017
Available online 5 December 2017
Communicated by the Managing
Editors

MSC: 14E30 32H50 08A35

Keywords:
Polarized endomorphism
Minimal model program
Q-abelian variety
Fano variety

ABSTRACT

An endomorphism f of a projective variety X is polarized (resp. quasi-polarized) if $f^*H \sim qH$ (linear equivalence) for some ample (resp. nef and big) Cartier divisor H and integer q > 1. First, we use cone analysis to show that a quasi-polarized endomorphism is always polarized, and the polarized property descends via any equivariant dominant rational map. Next, we show that a suitable maximal rationally connected fibration (MRC) can be made f-equivariant using a construction of N. Nakayama, that f descends to a polarized endomorphism of the base Y of this MRC and that this Y is a Q-abelian variety (quasi-étale quotient of an abelian variety). Finally, we show that we can run the minimal model program (MMP) f-equivariantly for mildly singular X and reach either a Q-abelian variety or a Fano variety of Picard number one. As a consequence, the building blocks of polarized endomorphisms are those of Q-abelian varieties and those of Fano varieties of Picard number one.

Along the way, we show that f always descends to a polarized endomorphism of the Albanese variety $\mathrm{Alb}(X)$ of X, and that the pullback of a power of f acts as a scalar multiplication on the Néron–Severi group of X (modulo torsion) when X is smooth and rationally connected.

E-mail addresses: ms@u.nus.edu (S. Meng), matzdq@nus.edu.sg (D.-Q. Zhang).

^{*} Corresponding author.

Partial answers about X being of Calabi–Yau type, or Fano type are also given with an extra primitivity assumption on f which seems necessary by an example.

© 2017 Elsevier Inc. All rights reserved.

Contents

1.	Introduction	244
2.	Preliminary results	249
3.	Properties of (quasi-) polarized endomorphisms	255
4.	Special MRC fibration and the non-uniruled case	258
5.	Proof of Corollary 1.4 and Proposition 1.6	260
6.	Minimal model program for polarized endomorphisms	263
7.	Examples of polarized endomorphisms	267
8.	Proof of Theorem 1.8	268
9.	Proof of Theorem 1.10 and Corollary 1.11	269
Ackno	owledgments	271
Refere	ences	272

1. Introduction

We work over an algebraically closed field k which has characteristic zero, and is uncountable (only used to guarantee the birational invariance of the rational connectedness property). Let f be a surjective endomorphism of a projective variety X. We say that f is polarized (resp. quasi-polarized), if there is an ample (resp. nef and big) Cartier divisor H such that $f^*H \sim qH$ (linear equivalence) for some integer q > 1. If X is a point, then the only trivial endomorphism is polarized by convention.

Let X be a projective variety of dimension n. We refer to Definition 2.1 for the numerical equivalence (\equiv) of \mathbb{R} -Cartier divisors and Definition 2.2 for the weak numerical equivalence (\equiv_w) of r-cycles with real coefficients. Denote by $N^1(X) := NS(X) \otimes_{\mathbb{Z}} \mathbb{R}$ for the Néron–Severi group NS(X). One can also regard $N^1(X)$ as the quotient vector space of \mathbb{R} -Cartier divisors modulo the numerical equivalence; see Definition 2.1. Denote by $N_r(X)$ the quotient vector space of r-cycles modulo the weak numerical equivalence.

Suppose further X is normal. Then the numerical equivalence and the weak numerical equivalence are the same for \mathbb{R} -Cartier divisors; in particular, the natural map $\mathrm{N}^1(X) \to \mathrm{N}_{n-1}(X)$ is well defined and an injection (cf. Definition 2.2 and Lemma 2.3). A Weil \mathbb{R} -divisor F is said to be big if F = A + E for some ample \mathbb{Q} -Cartier divisor $A \in \mathrm{N}^1(X)$ and pseudo-effective Weil \mathbb{R} -divisor E; see Definition 2.4.

A surjective endomorphism $f: X \to X$ of a projective variety X is a finite morphism. In fact, f induces an automorphism $f^*: \mathrm{N}^1(X) \to \mathrm{N}^1(X)$. So an ample divisor is the pull back of some divisor, which, together with the projection formula, imply the finiteness of f. Suppose further $f^*H \sim qH$ for some nef and big Cartier divisor H and q > 0, then,

Download English Version:

https://daneshyari.com/en/article/8905020

Download Persian Version:

https://daneshyari.com/article/8905020

<u>Daneshyari.com</u>