

Contents lists available at ScienceDirect

## Advances in Mathematics

www.elsevier.com/locate/aim



# Quantales and Fell bundles \*



#### Pedro Resende

Centro de Análise Matemática, Geometria e Sistemas Dinâmicos, Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal

#### ARTICLE INFO

#### Article history: Received 14 September 2017 Received in revised form 9 November 2017

Accepted 29 November 2017 Available online 8 December 2017 Communicated by Ross Street

MSC: 06F07 20M18 22A22 46L05 46L85 46L89 46M99

Keywords: Locally compact étale groupoids Fell bundles Reduced and full C\*-algebras Stably Gelfand quantales Maps of involutive quantales

Cartan subalgebras and Weyl groupoids

#### ABSTRACT

We study Fell bundles on groupoids from the viewpoint of quantale theory. Given any saturated upper semicontinuous Fell bundle  $\pi: E \to G$  on an étale groupoid G with  $G_0$  locally compact Hausdorff, equipped with a suitable completion  $C^*$ -algebra A of its convolution algebra, we obtain a map of involutive quantales  $p: \operatorname{Max} A \to \Omega(G)$ , where  $\operatorname{Max} A$ consists of the closed linear subspaces of A and  $\Omega(G)$  is the topology of G. We study various properties of p which mimick, to various degrees, those of open maps of topological spaces. These are closely related to properties of G,  $\pi$ , and A, such as G being Hausdorff, principal, or topological principal, or  $\pi$  being a line bundle. Under suitable conditions, which include G being Hausdorff, but without requiring saturation of the Fell bundle, A is an algebra of sections of the bundle if and only if it is the reduced C\*-algebra  $C_r^*(G, E)$ . We also prove that Max A is stably Gelfand. This implies the existence of a pseudogroup  $\mathcal{I}_B$  and of an étale groupoid  $\mathfrak{B}$  associated canonically to any sub-C\*-algebra  $B \subset A$ . We study a correspondence between Fell bundles and sub-C\*-algebras based on these constructions, and compare it to the construction of Weyl groupoids from Cartan subalgebras. © 2017 Elsevier Inc. All rights reserved.

E-mail address: pmr@math.tecnico.ulisboa.pt.

<sup>\*</sup> Work funded by FCT/Portugal through project PEst-OE/EEI/LA0009/2013 and by COST (European Cooperation in Science and Technology) through COST Action MP1405 QSPACE.

#### Contents

| 1.    | Introd  | uction                                                    | 313 |
|-------|---------|-----------------------------------------------------------|-----|
| 2.    | Prelim  | inaries                                                   | 316 |
|       | 2.1.    | Involutive quantales                                      | 316 |
|       | 2.2.    | The spectrum of a C*-algebra                              | 318 |
|       | 2.3.    | Étale groupoids                                           | 319 |
|       | 2.4.    | Quantic bundles                                           | 323 |
| 3.    | Fell bu | ındles versus maps                                        | 325 |
|       | 3.1.    | Fell bundles on groupoids                                 | 326 |
|       | 3.2.    | Convolution algebras                                      | 329 |
|       | 3.3.    | Compatible norms                                          | 333 |
|       | 3.4.    | Saturated Fell bundles as quantale maps                   | 337 |
| 4.    | Fell bu | ındles versus semiopen maps                               | 341 |
|       | 4.1.    | Open support as a left adjoint                            | 341 |
|       | 4.2.    | Localizable completions                                   | 342 |
|       | 4.3.    | Non-Hausdorff groupoids                                   | 343 |
|       | 4.4.    | Hausdorff groupoids                                       | 345 |
| 5.    | Fell bu | undles versus quantic bundles                             | 347 |
|       | 5.1.    | Fell line bundles                                         | 348 |
|       | 5.2.    | Fell line bundles with localizable completions            | 349 |
|       | 5.3.    | Principal groupoids and stable quantic bundles            | 351 |
| 6.    | Sub-C   | *-algebras                                                | 353 |
|       | 6.1.    | The pseudogroup of a sub-C*-algebra                       | 354 |
|       | 6.2.    | Groupoids from abelian sub-C*-algebras                    | 356 |
|       | 6.3.    | Fell bundles versus $\mathcal{I}$ -stable quantic bundles | 359 |
| Appe  | ndix A. | Locales                                                   | 362 |
|       | A.1.    | The category of locales                                   | 362 |
|       | A.2.    | Open maps                                                 | 363 |
| Appe  | ndix B. | Banach bundles                                            | 364 |
| Appe  | ndix C. | C*-algebras of Fell bundles                               | 365 |
|       | C.1.    | I-norm                                                    | 366 |
|       | C.2.    | Reduced and full C*-algebras                              | 367 |
|       | C.3.    | Hausdorff groupoids                                       | 370 |
| Refer | ences . |                                                           | 372 |
|       |         |                                                           |     |

### 1. Introduction

This paper draws its motivation from well known relations between C\*-algebras, groupoids, and quantales. These have been, so far, pairwise relations: one is the very prolific interplay between C\*-algebras and locally compact groupoids [9,33,36], which pervades much of the modern literature on operator algebras and noncommutative geometry and, in the case of étale groupoids, has led to fruitful notions of "diagonal" for C\*-algebras along with a geometric understanding of them in terms of étale groupoids, inverse semigroups, and Fell bundles [5-7,12,23,24,36,37]; another is the relation between groupoids and quantales [35,39], which in particular yields a biequivalence between the bicategories of localic étale groupoids and inverse quantal frames [41], and also a representation of étendues by inverse quantal frames [40] which is an instance of the general representation of Grothendieck toposes by Grothendieck quantales meanwhile developed

# Download English Version:

# https://daneshyari.com/en/article/8905024

Download Persian Version:

https://daneshyari.com/article/8905024

Daneshyari.com