

Contents lists available at ScienceDirect

### Advances in Mathematics

www.elsevier.com/locate/aim



# Projections of planar Mandelbrot random measures



Julien Barral a,b,\*, De-Jun Feng c

- <sup>a</sup> LAGA (UMR 7539), Département de Mathématiques, Université Paris 13 (Sorbonne-Paris-Cité), 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse, France
- $^{\rm b}$  DMA (UMR 8553), Ecole Normale Supérieure, 45 rue d'Ulm, 75005 Paris, France
- <sup>c</sup> Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong

#### ARTICLE INFO

Article history:
Received 3 June 2016
Received in revised form 29
November 2017
Accepted 5 December 2017
Available online xxxx
Communicated by Kenneth Falconer

MSC: 28A78 28A80 60F10 60G42 60G57

60K40

Keywords:
Mandelbrot measures
Hausdorff dimension
Multifractals
Phase transitions
Large deviations
Branching random walk in a random environment

#### ABSTRACT

Let  $\mu$  be a planar Mandelbrot measure and  $\pi_*\mu$  its orthogonal projection on one of the principal axes. We study the thermodynamic and geometric properties of  $\pi_*\mu$ . We first show that  $\pi_*\mu$  is exact dimensional, with  $\dim(\pi_*\mu) =$  $\min(\dim(\mu),\dim(\nu))$ , where  $\nu$  is the Bernoulli product measure obtained as the expectation of  $\pi_*\mu$ . We also prove that  $\pi_*\mu$  is absolutely continuous with respect to  $\nu$  if and only if  $\dim(\mu) > \dim(\nu)$ . Our results provides a new proof of Dekking-Grimmett-Falconer formula for the Hausdorff and box dimension of the topological support of  $\pi_*\mu$ , as well as a new variational interpretation. We obtain the free energy function  $\tau_{\pi_*\mu}$  of  $\pi_*\mu$  on a wide subinterval  $[0,q_c)$  of  $\mathbb{R}_+$ . For  $q \in [0, 1]$ , it is given by a variational formula which sometimes yields phase transitions of order larger than 1. For q > 1, it is given by  $\min(\tau_{\nu}, \tau_{\mu})$ , which can exhibit first order phase transitions. This is in contrast with the analyticity of  $\tau_{\mu}$  over  $[0, q_c)$ . Also, we prove the validity of the multifractal formalism for  $\pi_*\mu$  at each  $\alpha \in (\tau'_{\pi_*\mu}(q_c-), \tau'_{\pi_*\mu}(0+)]$ .

 $\ensuremath{{}^{\odot}}$  2017 Elsevier Inc. All rights reserved.

E-mail addresses: barral@math.univ-paris13.fr (J. Barral), djfeng@math.cuhk.edu.hk (D.-J. Feng).

<sup>\*</sup> Corresponding author.

#### Contents

| 1.                                                                                | Introd                                                                                     | uction                                                                     | 641 |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----|
| 2.                                                                                | Preliminaries on multifractal formalism and Mandelbrot measures on symbolic spaces         |                                                                            | 646 |
|                                                                                   | 2.1.                                                                                       | Multifractal formalism on symbolic spaces                                  | 646 |
|                                                                                   | 2.2.                                                                                       | Multifractal analysis of the Mandelbrot measures on $\Sigma \times \Sigma$ | 648 |
| 3.                                                                                | Main results for projections of Mandelbrot measures on the symbolic space                  |                                                                            | 650 |
|                                                                                   | 3.1.                                                                                       | Absolute continuity and dimension                                          | 651 |
|                                                                                   | 3.2.                                                                                       | Validity of the multifractal formalism                                     | 653 |
| 4.                                                                                | Phase                                                                                      | transition. Remarks and examples                                           | 654 |
| 5.                                                                                | Proofs of Theorem 3.1, Theorem 3.3(1), and Corollary 3.5                                   |                                                                            | 659 |
|                                                                                   | 5.1.                                                                                       | Proof of Theorem 3.1: absolute continuity                                  | 661 |
|                                                                                   | 5.2.                                                                                       | Proof of Theorem 3.3(1): dimension                                         | 664 |
|                                                                                   | 5.3.                                                                                       | Proof of Corollary 3.5: variational principle                              | 666 |
| 6.                                                                                | Proof                                                                                      | of Theorem 3.7: Differentiability properties of the function $\tau$        | 669 |
|                                                                                   | 6.1.                                                                                       | Differentiability over $(0,1-]$                                            | 669 |
|                                                                                   | 6.2.                                                                                       | Concavity of $\tau$ over $[0,1]$                                           | 672 |
|                                                                                   | 6.3.                                                                                       | Continuity and differentiability at 0                                      | 672 |
|                                                                                   | 6.4.                                                                                       | The value of $\tau'(0+)$                                                   | 673 |
|                                                                                   | 6.5.                                                                                       | Differentiability at 1                                                     | 673 |
|                                                                                   | 6.6.                                                                                       | Differentiability and concavity over $(1, q_c)$                            | 674 |
| 7.                                                                                |                                                                                            | of Theorem 3.7: Lower bound for the $L^q$ -spectrum                        |     |
| 8.                                                                                | Proof of Theorem 3.7: Upper bound for the $L^q$ -spectrum and validity of the multifractal |                                                                            |     |
|                                                                                   | formal                                                                                     | ism                                                                        | 676 |
|                                                                                   | 8.1.                                                                                       | Case (I)                                                                   | 677 |
|                                                                                   | 8.2.                                                                                       | Case (II)                                                                  | 680 |
|                                                                                   | 8.3.                                                                                       | Case (III)                                                                 | 688 |
|                                                                                   | 8.4.                                                                                       | Case (IV)                                                                  | 697 |
| 9.                                                                                | Positive moment estimates                                                                  |                                                                            | 698 |
|                                                                                   | 9.1.                                                                                       | Lemmas                                                                     | 698 |
|                                                                                   | 9.2.                                                                                       | Positive moments estimates for $X_n$                                       | 701 |
| 10.                                                                               | Result                                                                                     | s for projections of planar Mandelbrot measures                            | 708 |
| 11.                                                                               |                                                                                            | remarks                                                                    | 709 |
|                                                                                   | 0                                                                                          | nents                                                                      | 711 |
| Appendix A. Basic facts about extinction probabilities                            |                                                                                            |                                                                            |     |
| Appendix B. Basic properties of Mandelbrot martingales in a Bernoulli environment |                                                                                            |                                                                            |     |
| 1 1                                                                               | ndix C.                                                                                    | A useful lemma                                                             | 716 |
| References                                                                        |                                                                                            |                                                                            |     |
|                                                                                   |                                                                                            |                                                                            |     |

#### 1. Introduction

Mandelbrot measures are statistically self-similar measures introduced in early seventies by B. Mandelbrot in [41] as a simplified model for energy dissipation in intermittent turbulence. In  $\mathbb{R}^2$ , such a non-trivial random measure  $\mu$  is built on  $[0,1]^2$  and is characterized by  $\mathbb{E}(\mu([0,1]^2)) = 1$  and the equality in law

$$\mu = \sum_{0 \le i, j \le m-1} W_{i,j} \,\mu^{(i,j)} \circ S_{i,j}^{-1},\tag{1.1}$$

where m is an integer  $\geq 2$ ,  $S_{i,j}$  are similarity maps on  $\mathbb{R}^2$  defined by

$$S_{i,j}(x,y) = \left(\frac{x+i}{m}, \frac{y+j}{m}\right),$$

## Download English Version:

# https://daneshyari.com/en/article/8905038

Download Persian Version:

https://daneshyari.com/article/8905038

<u>Daneshyari.com</u>