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Let p be a planar Mandelbrot measure and m.p its or-
thogonal projection on one of the principal axes. We study
the thermodynamic and geometric properties of m.u. We
first show that m.u is exact dimensional, with dim(m.pu) =
min(dim(u), dim(v)), where v is the Bernoulli product mea-
sure obtained as the expectation of m,u. We also prove that
.t is absolutely continuous with respect to v if and only
if dim(p) > dim(v). Our results provides a new proof of
Dekking—Grimmett—Falconer formula for the Hausdorff and
box dimension of the topological support of m.pu, as well as
a new variational interpretation. We obtain the free energy
function 7, of m.p on a wide subinterval [0, ¢.) of Ry.. For
g € [0, 1], it is given by a variational formula which sometimes
yields phase transitions of order larger than 1. For ¢ > 1, it
is given by min(7,,7,), which can exhibit first order phase
transitions. This is in contrast with the analyticity of 7, over
[0, gc). Also, we prove the validity of the multifractal formal-
ism for m.p at each a € (71, (gc—), 7r, ,(0+)].
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1. Introduction

Mandelbrot measures are statistically self-similar measures introduced in early seven-
ties by B. Mandelbrot in [41] as a simplified model for energy dissipation in intermittent
turbulence. In R?, such a non-trivial random measure g is built on [0, 1]? and is charac-
terized by E(u([0,1]?)) = 1 and the equality in law

p= Y Wi oS, (1.1)

0<i,j<m—1

where m is an integer > 2, S; ; are similarity maps on R? defined by
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