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1. Introduction

The most celebrated identities in the theory of partitions are the Rogers—Ramanujan
identities: for r =1, 2,
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where we follow the standard notation
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The Rogers—Ramanujan identities were discovered by L. J. Rogers [15] in 1894, and
S. Ramanujan [13][14, p. 330] rediscovered them. In addition, P. A. MacMahon [12] and
I. J. Schur [16] independently discovered the beautiful combinatorial statement of (1.1):

For each positive integer n, and r = 1,2, the number of partitions of n into parts
greater than or equal to r with minimal difference 2 is equal to the number of partitions
of n into parts congruent to +r (mod5).

Since then, there has been considerable investigation on Rogers—Ramanujan type iden-
tities and their combinatorics. In particular, B. Gordon [7] made the first break-through
by proving an infinite family of combinatorial generalizations of the Rogers—Ramanujan
identities. Throughout this paper, for a partition 7, we write the parts of 7 in weakly
increasing order as follows:

Mg+ Mg—1+ -+ +m, where 7y <mg_q <--- <y,

Theorem 1.1 (Rogers—Ramanujan—Gordon identities). For 1 <r <k, let A r(n) be the
number of partitions of n into parts # 0, +r (mod 2k + 1). Let By .(n) be the number of
partitions ™ of n such that

T — Titk—1 = 2,
and at most r — 1 of the m; are equal to 1. Then for all n > 0,

Ag r(n) = B (n). (1.2)

Andrews [1] provided an analytic proof of Theorem 1.1, and he discovered the gener-
ating function for (1.2) in [3]:
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where N; =n; +nj1 + - +ng—1.
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