Advances in Mathematics 325 (2018) 814–823 $\,$

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Heisenberg uniqueness pairs corresponding to a finite number of parallel lines

霐

MATHEMATICS

Sayan Bagchi

Stat-Math Unit, Indian Statistical Institute, Kolkata 700102, India

A R T I C L E I N F O

Article history: Received 7 December 2017 Accepted 12 December 2017 Available online 20 December 2017 Communicated by the Managing Editors

MSC: primary 42A38, 42B10 secondary 44A35

Keywords: Fourier transform Heisenberg uniqueness pairs

1. Introduction

Let Γ be a curve on \mathbb{R}^2 and Λ be a subset of \mathbb{R}^2 . We call (Γ, Λ) to be a Heisenberg uniqueness pair if

$$\hat{\mu}|_{\Lambda} = 0$$
 implies $\mu = 0$

for every measure μ on \mathbb{R}^2 which is supported on Γ and also absolutely continuous with respect to the arc length of the curve. Here $\hat{\mu}$ stands for the Fourier transform of μ defined by

https://doi.org/10.1016/j.aim.2017.12.012 $0001\text{-}8708/ \odot$ 2017 Elsevier Inc. All rights reserved.

ABSTRACT

In this paper, we study the Heisenberg uniqueness pairs corresponding to a finite number of parallel lines Γ . We give a necessary condition and a sufficient condition for a subset Λ of \mathbb{R}^2 so that (Γ, Λ) becomes a HUP.

© 2017 Elsevier Inc. All rights reserved.

E-mail address: sayansamrat@gmail.com.

$$\hat{\mu}(\xi,\eta) = \int\limits_{\mathbb{R}^2} e^{\pi i (x\xi + y\eta)} d\mu(x,y)$$

where $\xi, \eta \in \mathbb{R}^2$.

The terminology "Heisenberg uniqueness pair" was first introduced by Hedenmalm and Montes-Rodríguez in [5]. In that paper they also studied the cases where Γ are a hyperbola and two parallel straight lines. After that, Heisenberg uniqueness pairs were studied for some more well-known curves on \mathbb{R}^2 by various people. For example, the case of circle and parabola were studied by Nir Lev [8] and Per Sjölin [10] respectively. Please see [2], [6], [9], [3] and [4] for more results in this direction.

In this paper we extend the results of [1] to finite number of parallel lines. However, unlike [1], we are not able to characterize Heisenberg pairs in the case Γ is a set of finitely many parallel lines.

2. Main result

In order to state our result we first set up some notations. Consider a subset E of \mathbb{R} and a point $\xi \in E$. Then we can define the following sets:

For $2 \leq l \leq n$, $P_l^{E,\xi} = \{\psi : E \to \mathbb{C}: \text{ there is an interval } I_{\xi} \text{ around } \xi \text{ and functions} \\ \varphi_j \in L^1(\mathbb{R}), j = 1, 2, ..., l-1 \text{ such that} \end{cases}$

$$\hat{\varphi}_1 + \hat{\varphi}_2 \psi + \hat{\varphi}_3 \psi^2 + \dots + \hat{\varphi}_{l-1} \psi^{l-2} + \psi^{l-1} = 0$$

on $I_{\xi} \cap E$ }. It is worthy to note the particular case l = 2, where $P_2^{E,\xi} = \{\psi : E \to \mathbb{C}:$ there is an interval I_{ξ} and functions $\varphi \in L^1(\mathbb{R})$, such that $\hat{\varphi} = \psi$ on $I_{\xi} \cap E$ }. We have to work with this particular case many times throughout the paper. Note that by Wiener's lemma ([7], page 57), if $\psi \in P_2^{E,\xi}$, then $\frac{1}{\psi} \in P_2^{E,\xi}$.

Let us consider *n* parallel lines $\Gamma = \mathbb{R} \times \{\alpha_1, \alpha_2, \cdots, \alpha_n\}$ where $\alpha_{i+1} - \alpha_i = constant$, $1 \leq i \leq n-1$. By translation and rescaling discussed in [5], it is enough to consider $\Gamma = \mathbb{R} \times \{0, 1, 2, \cdots, n-1\}$. If μ is a measure such that μ is supported on Γ and absolutely continuous with respect to arc length of Γ , then there exist functions $f_0, f_1, \cdots, f_{n-1} \in L^1(\mathbb{R})$, such that

$$\hat{\mu}(\xi,\eta) = \hat{f}_0(\xi) + e^{\pi i\eta} \hat{f}_1(\xi) + e^{2\pi i\eta} \hat{f}_2(\xi) + \dots + e^{(n-1)\pi i\eta} \hat{f}_{n-1}(\xi).$$
(2.1)

Since $\hat{\mu}$ is 2-periodic with respect to the second variable, we may assume Λ to be 2-periodic with respect to the second coordinate.

Let $\Pi(\Lambda)$ be the projection of Λ on x-axis. That is,

$$\Pi(\Lambda) = \{ \xi \in \mathbb{R} : (\xi, \eta) \in \Lambda \text{ for some } \eta \in \mathbb{R} \}.$$

Also consider the set,

$$Img(\xi) = \{\eta \in \mathbb{R} : (\xi, \eta) \in \Lambda, 0 \le \eta < 2\}.$$

Download English Version:

https://daneshyari.com/en/article/8905044

Download Persian Version:

https://daneshyari.com/article/8905044

Daneshyari.com