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Given one metric measure space X satisfying a linear Brunn—
Minkowski inequality, and a second one Y satisfying a Brunn—
Minkowski inequality with exponent p > —1, we prove that
the product X x Y with the standard product distance
and measure satisfies a Brunn—Minkowski inequality of or-
der 1/(1 + p~!) under mild conditions on the measures and
the assumption that the distances are strictly intrinsic. The
same result holds when we consider restricted classes of sets.
We also prove that a linear Brunn—Minkowski inequality is
obtained in X X Y when Y satisfies a Prékopa—Leindler in-
equality.

In particular, we show that the classical Brunn—Minkowski in-
equality holds for any pair of weakly unconditional sets in R™
(i-e., those containing the projection of every point in the set
onto every coordinate subspace) when we consider the stan-
dard distance and the product measure of n one-dimensional
real measures with positively decreasing densities. This yields
an improvement of the class of sets satisfying the Gaussian
Brunn—Minkowski inequality.
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Furthermore, associated isoperimetric inequalities as well as
recently obtained Brunn—Minkowski’s inequalities are derived
from our results.
© 2017 The Authors. Published by Elsevier Inc. This is an
open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The n-dimensional volume of a set M in the n-dimensional Euclidean space R™ (i.e.,
its n-dimensional Lebesgue measure) is denoted by vol(M), or vol, (M) if the distinction
of the dimension is useful. The symbol B,, stands for the n-dimensional closed unit ball
with respect to the Euclidean norm |- |.

Relevant families of subsets of Euclidean space used in this work are those of uncon-
ditional and weakly unconditional sets: a subset A C R"™ is said to be unconditional if
for every (z1,...,2,) € A and every (e1,...,€,) € [—1,1]™ one has

(61%1, . ,En.’En) € A.

In a similar way, we will say that A is weakly unconditional (see Fig. 1) if for every
(x1,...,2,) € A and every (e1,...,€,) € {0,1}™ one has

(6121, .. ., €nTpn) € A.

Weakly unconditional sets are those for which the projection of every point in the
set onto any coordinate subspace is again contained in the set. Equivalently, a set A is
weakly unconditional if and only if every non-empty 1-section of A, through parallel lines
to the coordinate axes, contains the origin (identifying the corresponding 1-dimensional
affine subspace with its direction; cf. Fig. 1).

Given an arbitrary non-empty set B C R", B will denote its weakly unconditional hull
(i-e., the intersection of all weakly unconditional sets containing B), which is just the
union of B with every projection of it onto any coordinate subspace. The unconditional
hull of B is defined in a similar way, see Fig. 2.

It is worth mentioning that an unconditional set in R is an interval symmetric with
respect to the origin, and that a weakly unconditional set in R is just a set containing
the origin.

Another notion used in this paper is that of positively decreasing function. We say that
a non-negative function f: R — R is positively decreasing if the functions ¢t — f(¢),
t — f(—t) are decreasing (i.e., non-increasing) on [0, co).

The Minkowski sum of two non-empty sets A, B C R™ denotes the classical vector
addition of them: A+ B = {a+b: a € A, b € B}. It is natural to wonder about
the possibility of relating the volume of the Minkowski sum of two sets in terms of
their volumes; this is the statement of the Brunn—Minkowski inequality. Indeed, taking
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