

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Brunn–Minkowski inequalities in product metric measure spaces $\stackrel{\bigstar}{\approx}$

霐

MATHEMATICS

Manuel Ritoré^{a,*}, Jesús Yepes Nicolás^b

^a Departamento de Geometría y Topología & Excellence Research Unit "Modeling Nature" (MNat), Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain

Spain ^b Departamento de Matemáticas, Universidad de León, Campus de Vegazana, 24071 León, Spain

ARTICLE INFO

Article history: Received 9 June 2017 Received in revised form 28 November 2017 Accepted 12 December 2017 Available online xxxx Communicated by Erwin Lutwak

MSC: primary 52A40, 28A35 secondary 60G15, 52A20

Keywords: Brunn–Minkowski inequality Metric measure space Product space Gaussian measure Product measure Isoperimetric inequality

АВЅТ КАСТ

Given one metric measure space X satisfying a linear Brunn– Minkowski inequality, and a second one Y satisfying a Brunn– Minkowski inequality with exponent $p \geq -1$, we prove that the product $X \times Y$ with the standard product distance and measure satisfies a Brunn–Minkowski inequality of order $1/(1 + p^{-1})$ under mild conditions on the measures and the assumption that the distances are strictly intrinsic. The same result holds when we consider restricted classes of sets. We also prove that a linear Brunn–Minkowski inequality is obtained in $X \times Y$ when Y satisfies a Prékopa–Leindler inequality.

In particular, we show that the classical Brunn–Minkowski inequality holds for any pair of weakly unconditional sets in \mathbb{R}^n (i.e., those containing the projection of every point in the set onto every coordinate subspace) when we consider the standard distance and the product measure of n one-dimensional real measures with positively decreasing densities. This yields an improvement of the class of sets satisfying the Gaussian Brunn–Minkowski inequality.

https://doi.org/10.1016/j.aim.2017.12.010

^{*} First author is supported by MICINN-FEDER grant MTM2013-48371-C2-1-P and Junta de Andalucía grants FQM-325 and P09-FQM-5088. Second author is partially supported by ICMAT Severo Ochoa project SEV-2015-0554 (MINECO) and by "Programa de Ayudas a Grupos de Excelencia de la Región de Murcia", Fundación Séneca, 19901/GERM/15.

^{*} Corresponding author.

E-mail addresses: ritore@ugr.es (M. Ritoré), jyepn@unileon.es (J. Yepes Nicolás).

 $^{0001-8708/\}odot 2017$ The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Furthermore, associated isoperimetric inequalities as well as recently obtained Brunn–Minkowski's inequalities are derived from our results.
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The *n*-dimensional volume of a set M in the *n*-dimensional Euclidean space \mathbb{R}^n (i.e., its *n*-dimensional Lebesgue measure) is denoted by $\operatorname{vol}(M)$, or $\operatorname{vol}_n(M)$ if the distinction of the dimension is useful. The symbol \mathbb{B}_n stands for the *n*-dimensional closed unit ball with respect to the Euclidean norm $|\cdot|$.

Relevant families of subsets of Euclidean space used in this work are those of unconditional and weakly unconditional sets: a subset $A \subset \mathbb{R}^n$ is said to be *unconditional* if for every $(x_1, \ldots, x_n) \in A$ and every $(\epsilon_1, \ldots, \epsilon_n) \in [-1, 1]^n$ one has

$$(\epsilon_1 x_1, \ldots, \epsilon_n x_n) \in A.$$

In a similar way, we will say that A is *weakly unconditional* (see Fig. 1) if for every $(x_1, \ldots, x_n) \in A$ and every $(\epsilon_1, \ldots, \epsilon_n) \in \{0, 1\}^n$ one has

$$(\epsilon_1 x_1, \ldots, \epsilon_n x_n) \in A.$$

Weakly unconditional sets are those for which the projection of every point in the set onto any coordinate subspace is again contained in the set. Equivalently, a set A is weakly unconditional if and only if every non-empty 1-section of A, through parallel lines to the coordinate axes, contains the origin (identifying the corresponding 1-dimensional affine subspace with its direction; cf. Fig. 1).

Given an arbitrary non-empty set $B \subset \mathbb{R}^n$, \overline{B} will denote its *weakly unconditional hull* (i.e., the intersection of all weakly unconditional sets containing B), which is just the union of B with every projection of it onto any coordinate subspace. The unconditional hull of B is defined in a similar way, see Fig. 2.

It is worth mentioning that an unconditional set in \mathbb{R} is an interval symmetric with respect to the origin, and that a weakly unconditional set in \mathbb{R} is just a set containing the origin.

Another notion used in this paper is that of *positively decreasing* function. We say that a non-negative function $f : \mathbb{R} \longrightarrow \mathbb{R}_{\geq 0}$ is positively decreasing if the functions $t \mapsto f(t)$, $t \mapsto f(-t)$ are decreasing (i.e., non-increasing) on $[0, \infty)$.

The Minkowski sum of two non-empty sets $A, B \subset \mathbb{R}^n$ denotes the classical vector addition of them: $A + B = \{a + b : a \in A, b \in B\}$. It is natural to wonder about the possibility of relating the volume of the Minkowski sum of two sets in terms of their volumes; this is the statement of the *Brunn–Minkowski inequality*. Indeed, taking Download English Version:

https://daneshyari.com/en/article/8905046

Download Persian Version:

https://daneshyari.com/article/8905046

Daneshyari.com