
Advances in Mathematics 324 (2018) 1–39

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Floer homology and fractional Dehn twists

Matthew Hedden ∗, Thomas E. Mark

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 March 2015
Received in revised form 29 August 
2017
Accepted 25 October 2017
Available online xxxx
Communicated by Managing Editors

Keywords:
Floer homology
3-Manifold
Knot
L-space
Contact structure
Ractional Dehn twist
Heegaard
Mapping class

We establish a relationship between Heegaard Floer homology 
and the fractional Dehn twist coefficient of surface automor-
phisms. Specifically, we show that the rank of the Heegaard 
Floer homology of a 3-manifold bounds the absolute value 
of the fractional Dehn twist coefficient of the monodromy of 
any of its open book decompositions with connected binding. 
We prove this by showing that the rank of Floer homology 
gives bounds for the number of boundary parallel right or 
left Dehn twists necessary to add to a surface automorphism 
to guarantee that the associated contact manifold is tight or 
overtwisted, respectively. By examining branched double cov-
ers, we also show that the rank of the Khovanov homology 
of a link bounds the fractional Dehn twist coefficient of its 
odd-stranded braid representatives.

© 2017 Published by Elsevier Inc.

1. Introduction

Let S be a compact oriented 2-manifold with a single boundary component, and φ a 
homeomorphism of S fixing its boundary pointwise. The fractional Dehn twist coefficient 
of φ is a rational number τ(φ) ∈ Q that depends only on the isotopy class of φ rel 
boundary, and can be understood as a measure of the amount of twisting around the 
boundary effected by φ compared to a “canonical”—e.g., pseudo-Anosov—representative 

* Corresponding author.
E-mail addresses: mhedden@math.msu.edu (M. Hedden), tmark@virginia.edu (T.E. Mark).

https://doi.org/10.1016/j.aim.2017.11.008
0001-8708/© 2017 Published by Elsevier Inc.

https://doi.org/10.1016/j.aim.2017.11.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aim
mailto:mhedden@math.msu.edu
mailto:tmark@virginia.edu
https://doi.org/10.1016/j.aim.2017.11.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aim.2017.11.008&domain=pdf


2 M. Hedden, T.E. Mark / Advances in Mathematics 324 (2018) 1–39

of its (free) isotopy class. More precisely, consider the image of φ under the natural map 
Aut(S, ∂S) → Aut(S) which drops the requirement that an isotopy fixes the boundary 
pointwise. In this latter group, φ is isotopic to its Nielsen–Thurston representative; that 
is, there is an isotopy Φ : S × [0, 1] → S such that Φ0 = φ and Φ1 is either periodic, 
reducible, or pseudo-Anosov.1 Considering the restriction of Φ to the boundary, we obtain 
a homeomorphism:

Φ∂ : ∂S × [0, 1] → ∂S × [0, 1]

defined by Φ∂(x, t) = (Φt(x), t). The fractional Dehn twist coefficient τ(φ) can be defined 
as the winding number of the arc Φ(θ× [0, 1]) where θ ∈ ∂S is a basepoint.2 This would 
appear only to associate a real number to φ, which could depend on the choice of base-
point and isotopy. The Nielsen–Thurston classification, however, shows that this winding 
number is a well-defined rational-valued invariant τ(φ) ∈ Q. The definition extends eas-
ily to surfaces with several boundary circles, in which case there is a corresponding twist 
coefficient for each component of the boundary. Here we will be concerned only with the 
case of connected boundary.

The study of fractional Dehn twist coefficients dates at least from the work of Gabai 
and Oertel [7] in the context of essential laminations of 3-manifolds, where, with different 
conventions than those used here, it appeared as the slope of the “degenerate curve” [7, 
pg. 62]. Honda, Kazez, and Matic [13,14] observed a connection with contact topology 
through open book decompositions, which has been explored by various authors [3,18,
16]. The following proposition summarizes a few key properties of the fractional Dehn 
twist coefficient.

Proposition ([21,16]). Let τ : Aut(S, ∂S) → Q be the fractional Dehn twist coefficient, 
and let t∂ denote the mapping class of a right-handed Dehn twist around a curve parallel 
to ∂S. Then for all φ, ψ ∈ Aut(S, ∂S), we have:

(1) (Quasimorphism) |τ(φ ◦ ψ) − τ(φ) − τ(ψ)| � 1.
(2) (Homogeneity) τ(φn) = nτ(φ).
(3) (Boundary Twisting) τ(φ ◦ t∂) = τ(φ) + 1.

The first two properties easily imply that the fractional Dehn twist is invariant under 
conjugation (see e.g., [8, Proposition 5.3]), and the third implies that it can be arbitrarily 
large, either positively or negatively. There are constraints, however, on the possible 
denominators of τ(φ) based on the topology of S; cf. [6, Theorem 8.8], [18, Theorem 4.4], 
[36].

1 As in [18], such a map is called reducible only if is not periodic. Moreover, in the reducible case, after 
an isotopy rel ∂S we get a subsurface of S to which φ restricts as a map with periodic or pseudo-Anosov 
representative: we apply the definition of fractional Dehn twist coefficient to the restriction of φ to that 
subsurface.
2 τ(φ) can be defined without Nielsen–Thurston theory by lifting φ to the universal cover and using the 

translation number of an associated action on a line at infinity [21].
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