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For any i, j > 0 with i + j = 1, let Bad(i, j) denote the set 
of points (x, y) ∈ R2 such that max{‖qx‖1/i, ‖qy‖1/j} > c/q
for some positive constant c = c(x, y) and all q ∈ N. We 
show that Bad(i, j) ∩ C is winning in the sense of Schmidt 
games for a large class of planar curves C, namely, everywhere 
non-degenerate planar curves and straight lines satisfying 
a natural Diophantine condition. This strengthens recent 
results solving a problem of Davenport from the sixties. 
In short, within the context of Davenport’s problem, the 
winning statement is best possible. Furthermore, we obtain 
the inhomogeneous generalisations of the winning results for 
planar curves and lines and also show that the inhomogeneous 
form of Bad(i, j) is winning for two dimensional Schmidt 
games.
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(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

A real number x is said to be badly approximable if there exists a positive constant 
c(x) such that

‖qx‖ > c(x) q−1 ∀ q ∈ N .

Here and throughout ‖ · ‖ denotes the distance of a real number to the nearest integer. It 
is well-known that the set Bad of badly approximable numbers is of Lebesgue measure 
zero but of maximal Hausdorff dimension; i.e. dimBad = 1. In higher dimensions there 
are various natural generalisations of Bad. Restricting our attention to the plane R2, 
given a pair of real numbers i and j such that

0 < i, j < 1 and i + j = 1 , (1.1)

a point (x, y) ∈ R2 is said to be (i, j)-badly approximable if there exists a positive constant 
c(x, y) such that

max{ ‖qx‖ 1
i , ‖qy‖ 1

j } > c(x, y) q−1 ∀ q ∈ N .

Denote by Bad(i, j) the set of (i, j)-badly approximable points in R2. In the case 
i = j = 1/2, the set under consideration is the standard set of simultaneously badly 
approximable points. It easily follows from classical results in the theory of metric Dio-
phantine approximation that Bad(i, j) is of (two-dimensional) Lebesgue measure zero. 
Regarding dimension, it was shown by Schmidt [14] in the vintage year of 1966 that 
dimBad(1

2 , 
1
2 ) = 2. In fact, Schmidt proved the significantly stronger statement that 

Bad(1
2 , 

1
2 ) is winning in the sense of his now famous (α, β)-games – see §2.1. Almost 

forty years later it was proved in [12] that dimBad(i, j) = 2 and just recently the first 
author in [2] has shown that Bad(i, j) is in fact winning. The latter implies that any 
countable intersection of Bad(i, j) sets is of full dimension and thus provides a clean 
and direct proof of Schmidt’s Conjecture – see also [1,3].

Now let C be a planar curve. Without loss of generality, we assume that C is given as 
a graph

Cf := {(x, f(x)) : x ∈ I}

for some function f defined on an interval I ⊂ R. Throughout we will assume that 
f ∈ C(2)(I), a condition that conveniently allows us to define the curvature. Motivated 
by a problem of Davenport [9, p. 52] from the sixties, the following statement regarding 
the intersection of Bad(i, j) sets with any curve C that is not a straight line segment 
has recently been established [4,5].

Theorem A. Let (it, jt) be a countable number of pairs of real numbers satisfying (1.1)
and suppose that
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