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Let Z be the typical cell of a stationary Poisson hyperplane 
tessellation in Rd. The distribution of the number of facets 
f(Z) of the typical cell is investigated. It is shown, that under 
a well-spread condition on the directional distribution, the 
quantity n

2
d−1 n
√
P(f(Z) = n) is bounded from above and from 

below. When f(Z) is large, the isoperimetric ratio of Z is 
bounded away from zero with high probability.
These results rely on one hand on the Complementary 
Theorem which provides a precise decomposition of the 
distribution of Z and on the other hand on several geometric 
estimates related to the approximation of polytopes by 
polytopes with fewer facets.
From the asymptotics of the distribution of f(Z), tail 
estimates for the so-called Φ content of Z are derived as well 
as results on the conditional distribution of Z when its Φ
content is large.
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1. Introduction

One of the classical models in stochastic geometry to generate a random mosaic is the 
construction via a Poisson hyperplane process. A Poisson hyperplane process consists of 
countably many random hyperplanes in Rd chosen in such a way, that their distribution 
is translation invariant, the distribution of the direction of the hyperplanes follows a 
directional distribution ϕ, i.e. an even probability measure on the unit sphere which 
is not concentrated on some great circle, and the number of hyperplanes hitting an 
arbitrary convex set K is Poisson distributed.

Such a Poisson hyperplane process tessellates Rd into countably many convex poly-
topes, the tiles of the mosaic, see e.g. [23, Theorem 10.3.2]. The distribution of a tile 
chosen at random is the distribution of the so-called typical cell Z, a random polytope.

The typical cell has been investigated intensively in the past decades, numerous papers 
have been dedicated to describe quantities associated with this cell, for example volume, 
surface area, mean width, number of facets, etc. The expected number of facets f(Z)
of the typical cell and the expected volume Vd(Z) are known, see e.g. the first works 
due to Miles [18,19] and Matheron [16] as well as Chapter 10 from the seminal book of 
Schneider and Weil [23] and the survey [3].

But in almost all cases the distribution of these quantities is out of reach, and even 
good approximations are extremely difficult and unknown so far. Our main theorem fills 
this gap for the number of facets of Z, giving precise asymptotics for the tails of the 
distribution.

Theorem 1.1. There exists a constant c1 > 0, depending on ϕ, such that for n ≥ d + 1,

P(f(Z) = n) < cn1 n− 2n
d−1 .

Furthermore, there exists an integer nϕ such that P(f(Z) = n) is either vanishing or 
strictly decreasing for n ≥ nϕ.

Here and in the sequel, ci will denote a positive constant which depends on dimen-
sion d. It will be specified when it depends on ϕ or another parameter.

It is clear that in general there is no matching lower bound, for example if the di-
rections of the hyperplane process are concentrated on a finite set. We prove that, if 
the directional distribution satisfies a mild condition, we have lower bounds of the same 
order in n as the upper bound above. In the following, we call ϕ well spread if there 
exists a cap on the unit sphere where ϕ is bounded from below by a multiple of the 
spherical Lebesgue measure.

Theorem 1.2. Assume that ϕ is well spread. Then there exists a constant c2 > 0, depend-
ing on ϕ, such that for n ≥ d + 1,

P(f(Z) = n) > cn2 n− 2n
d−1 .
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