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We characterize periodic elements in Gevrey classes, Gelfand–
Shilov distribution spaces and modulation spaces, in terms of 
estimates of involved Fourier coefficients, and by estimates 
of their short-time Fourier transforms. If q ∈ [1, ∞), ω is 
a suitable weight and (EE

0 )′ is the set of all E-periodic 
elements, then we prove that the dual of M∞,q

(ω) ∩ (EE
0 )′ equals 

M∞,q′

(1/ω) ∩ (EE
0 )′ by suitable extensions of Bessel’s identity.

© 2017 Elsevier Inc. All rights reserved.

0. Introduction

A fundamental issue in analysis concerns periodicity. For example, several problems 
in the theory of partial differential equations and in signal processing involve periodic 
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functions and distributions. In such situations it is in general possible to discretize the 
problems by means of Fourier series expansions of these functions and distributions.

We recall that if f is a smooth 1-periodic function on Rd, then f is equal to its Fourier 
series ∑

α∈Zd

c(α)e2πi〈 · ,α〉, (0.1)

where the Fourier coefficients c(α) can be evaluated by the formula

c(f, α) = c(α) =
∫

[0,1]d

f(x)e−2πi〈x,α〉 dx.

(Our investigations later on involve functions and distributions with more general pe-
riodics. See also [18], and Sections 1 and 2 for notations.) By the smoothness of f it 
follows that for every N ≥ 0, there is a constant CN ≥ 0 such that

|c(α)| ≤ CN 〈α〉−N , (0.2)

and it follows from Weierstrass theorem that the series (0.1) is uniformly convergent (cf. 
e.g. [18, Section 7.2]). Here 〈x〉 = (1 + |x|).

Assume instead that f is a 1-periodic distribution on Rd, and let φ be compactly 
supported and smooth on Rd such that∑

k∈Zd

φ( · − k) = 1. (0.3)

Then f is a tempered distribution and is still equal to its Fourier series (0.1) in distri-
bution sense. The Fourier coefficients for f are uniquely defined and can be computed 
by

c(f, α) = c(α) = 〈f, φe−i〈 · ,α〉〉, (0.4)

and satisfy

|c(α)| ≤ C〈α〉N , (0.5)

for some constants C and N which only depend on f . In particular, c(f, α) is independent 
of the compactly supported smooth φ in (0.3) and (0.4). (Cf. e.g. [18, Section 7.2]. See 
also [32] for an early approach to formal Fourier series expansions.)

The conditions (0.2) and (0.5) are not only necessary but also sufficient for a formal 
Fourier series expansion (0.1) being smooth respectively a tempered distribution. Hence, 
by a unique extension of Parseval’s identity
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