

Contents lists available at ScienceDirect

### Advances in Mathematics

www.elsevier.com/locate/aim



# Canonical tilting relative generators



Agnieszka Bodzenta a,\*, Alexey Bondal b,c,d

- <sup>a</sup> Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, Warsaw 02-097, Poland
- b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russian Federation
- <sup>c</sup> Kavli Institute for the Physics and Mathematics of the Universe (WPI),
- The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
- <sup>d</sup> National Research University Higher School of Economics, Russian Federation

#### ARTICLE INFO

## ABSTRACT

Article history:
Received 7 April 2017
Received in revised form 17
September 2017
Accepted 18 September 2017
Available online 7 November 2017
Communicated by Michel Van den
Bergh

Keywords:
Derived category
Birational morphism
t-structure
Tilting object

Given a relatively projective birational morphism  $f\colon X\to Y$  of smooth algebraic spaces with dimension of fibers bounded by 1, we construct tilting relative (over Y) generators  $T_{X,f}$  and  $S_{X,f}$  in  $\mathcal{D}^b(X)$ . We develop a piece of general theory of strict admissible lattice filtrations in triangulated categories and show that  $\mathcal{D}^b(X)$  has such a filtration  $\mathcal{L}$  where the lattice is the set of all birational decompositions  $f\colon X\stackrel{g}{\to} Z\stackrel{h}{\to} Y$  with smooth Z. The t-structures related to  $T_{X,f}$  and  $S_{X,f}$  are proved to be glued via filtrations left and right dual to  $\mathcal{L}$ . We realise all such Z as the fine moduli spaces of simple quotients of  $\mathcal{O}_X$  in the heart of the t-structure for which  $S_{X,g}$  is a relative projective generator over Y. This implements the program of interpreting relevant smooth contractions of X in terms of a suitable system of t-structures on  $\mathcal{D}^b(X)$ .

© 2017 Elsevier Inc. All rights reserved.

#### Contents

<sup>\*</sup> Corresponding author.

E-mail addresses: A.Bodzenta@mimuw.edu.pl (A. Bodzenta), bondal@mi.ras.ru (A. Bondal).

| Acknowledgement |                                                              | 230                                                                                            |     |
|-----------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----|
| 1.              | Strict                                                       | lattice filtrations and gluing of t-structures                                                 | 231 |
|                 | 1.1.                                                         | Strict lattice filtrations on categories                                                       | 231 |
|                 | 1.2.                                                         | Gluing of t-structures                                                                         | 235 |
| 2.              | The di                                                       | stributive lattice of decompositions for $f$                                                   | 237 |
|                 | 2.1.                                                         | Decomposition of birational morphisms of smooth algebraic spaces                               | 238 |
|                 | 2.2.                                                         |                                                                                                |     |
|                 | 2.3.                                                         | $\operatorname{Conn}(f)$ and irreducible components of the exceptional divisor $\ldots \ldots$ |     |
| 3.              | Filtrat                                                      | ions and the standard t-structure on the null category                                         |     |
|                 | 3.1.                                                         | $\mathrm{Dec}(f)$ and $\mathrm{Dec}(f)^\mathrm{op}$ -filtrations on the null-category          | 247 |
|                 | 3.2.                                                         | The standard $t$ -structure on the null-category is glued                                      | 249 |
| 4.              | Tilting                                                      | g relative generators                                                                          | 251 |
|                 | 4.1.                                                         | Generators in stacks of subcategories in $\mathcal{D}^b(X)$                                    | 251 |
|                 | 4.2.                                                         | A tilting relative generator for the null category                                             |     |
|                 | 4.3.                                                         | Tilting relative generators for $\mathcal{D}^b(X)$                                             |     |
| 5.              | A system of t-structure on $\mathcal{D}^b(X)$ related to $f$ |                                                                                                |     |
|                 | 5.1.                                                         | T-structures on the null-category and on $\mathcal{D}^b(X)$ : one blow-up                      | 263 |
|                 | 5.2.                                                         | Duality and gluing                                                                             |     |
|                 | 5.3.                                                         | The gluing properties for the t-structures                                                     |     |
|                 | 5.4.                                                         | Tilting of the t-structures in torsion pairs                                                   | 268 |
| 6.              |                                                              | r 1                                                                                            |     |
|                 | idix A.                                                      | 9                                                                                              |     |
| Refere          | ences .                                                      |                                                                                                | 277 |

#### Introduction

This paper is devoted to the categorical study of relatively projective birational morphisms  $f \colon X \to Y$  between smooth algebraic spaces with the dimension of fibres bounded by 1. According to a theorem of V. Danilov such a morphism has a decomposition into a sequence of blow-ups with smooth centers of codimension 2. Our goal is to find a categorical interpretation for f and for all possible intermediate contractions in terms of transformations of t-structures in the bounded derived category  $\mathcal{D}^b(X)$  of coherent sheaves on X.

Recall that T. Bridgeland, in his approach to proving the derived flop conjecture (see [9]) in dimension 3, introduced in [12] a series of t-structures in  $\mathcal{D}^b(X)$  related to a birational morphism  $f \colon X \to Y$  of projective varieties with fibers of dimension bounded by 1. The t-structures, with hearts  ${}^p\mathrm{Per}(X/Y)$ , depended on an integer parameter  $p \in \mathbb{Z}$ . Under the assumption that f was a flopping contraction, he used these t-structures to define the flopped variety as a moduli space of so-called point objects in  ${}^{-1}\mathrm{Per}(X/Y)$ .

In our setting of divisorial contractions instead of flopping contractions, we construct a system of t-structures with nice properties and interpret all possible intermediate smooth contractions between X and Y as the fine moduli spaces of simple quotients of  $\mathcal{O}_X$  in the hearts of those t-structures.

We study the partially ordered set Dec(f) of all decompositions for f into two birational morphisms with a smooth intermediate space. We prove that it is a distributive lattice and identify it with the lattice of lower ideals in a poset Conn(f), which is a subposet in Dec(f) (see Corollary 2.15). We provide with various descriptions of Conn(f)

## Download English Version:

# https://daneshyari.com/en/article/8905084

Download Persian Version:

https://daneshyari.com/article/8905084

<u>Daneshyari.com</u>