

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Ramanujan coverings of graphs

Chris Hall^{a,1}, Doron Puder^{b,*,2}, William F. Sawin^{c,3}

- Department of Mathematics, University of Wyoming, Laramie, WY 82071, USA
 School of Mathematics, Institute for Advanced Study, Einstein Drive, Princeton, N. 1.08510, USA
- ^c Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, NJ 08544-1000, USA

ARTICLE INFO

Article history: Received 22 February 2016 Accepted 18 October 2017 Available online 7 November 2017 Communicated by Benjamin Sudakov

Keywords: Expander graphs Ramanujan graphs Interlacing polynomials Matching polynomial

ABSTRACT

Let G be a finite connected graph, and let ρ be the spectral radius of its universal cover. For example, if G is k-regular then $\rho = 2\sqrt{k-1}$. We show that for every r, there is an r-covering (a.k.a. an r-lift) of G where all the new eigenvalues are bounded from above by ρ . It follows that a bipartite Ramanujan graph has a Ramanujan r-covering for every r. This generalizes the r=2 case due to Marcus, Spielman and Srivastava [26].

Every r-covering of G corresponds to a labeling of the edges of G by elements of the symmetric group S_r . We generalize this notion to labeling the edges by elements of various groups and present a broader scenario where Ramanujan coverings are guaranteed to exist.

In particular, this shows the existence of richer families of bipartite Ramanujan graphs than was known before. Inspired by [26], a crucial component of our proof is the existence of interlacing families of polynomials for complex reflection groups. The core argument of this component is taken from [27].

E-mail addresses: chall14@uwyo.edu (C. Hall), doronpuder@gmail.com (D. Puder), wsawin@math.princeton.edu (W.F. Sawin).

^{*} Corresponding author.

 $^{^{1}}$ Author Hall was partially supported by Simons Foundation award 245619 and IAS NSF grant DMS-1128155.

² Author Puder was supported by the Rothschild fellowship and by the National Science Foundation under agreement No. CCF-1412958.

 $^{^3}$ Author Sawin was supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1148900.

Another important ingredient of our proof is a new generalization of the matching polynomial of a graph. We define the r-th matching polynomial of G to be the average matching polynomial of all r-coverings of G. We show this polynomial shares many properties with the original matching polynomial. For example, it is real rooted with all its roots inside $[-\rho, \rho]$.

 \odot 2017 Elsevier Inc. All rights reserved.

Contents

1.	Introd	luction	368
	1.1.	Ramanujan coverings	368
	1.2.	Group labeling of graphs and Ramanujan coverings	370
		1.2.1. Some remarks	375
	1.3.	Overview of the proof	376
		1.3.1. Part (i): a Ramanujan point inside $\Delta_r(G)$	377
		1.3.2. Part (ii): a real-rooted region inside $\Delta_r(G)$	377
2.	Backg	ground and preliminary claims	380
	2.1.		380
	2.2.	The <i>d</i> -matching polynomial	383
	2.3.	Group labelings of graphs	386
	2.4.	Group representations	387
	2.5.	Interlacing polynomials	389
3.	Property $(\mathcal{P}1)$ and the Proof of Theorem 1.8		390
	3.1.	Determinant of sum of matrices	391
	3.2.	Matrix coefficients	392
	3.3.	Proof of Theorem 1.8	393
4.	Property $(\mathcal{P}2)$ and the proof of Theorem 1.10		396
	4.1.	Average characteristic polynomial of sum of random matrices	396
	4.2.	Average characteristic polynomial of random coverings	399
	4.3.	Proof of Theorem 1.10	401
5.	On pairs satisfying $(\mathcal{P}1)$ and $(\mathcal{P}2)$ and further applications		403
	5.1.	Complex reflection groups	403
	5.2.	Pairs satisfying $(\mathcal{P}1)$	404
	5.3.	Applications of Theorem 1.11	405
	5.4.	Permutation representations	406
6.	Open	questions	407
Ackno	owledg	ments	409
Refer	ences		409

1. Introduction

1.1. Ramanujan coverings

Throughout this paper, we assume that G is a finite, connected, undirected graph on n vertices and that A_G is its adjacency matrix. The eigenvalues of A_G are real and we denote them by

$$\lambda_n \leq \ldots \leq \lambda_2 \leq \lambda_1 = \mathfrak{pf}(G)$$
,

Download English Version:

https://daneshyari.com/en/article/8905090

Download Persian Version:

https://daneshyari.com/article/8905090

<u>Daneshyari.com</u>