

Contents lists available at ScienceDirect

Advances in Mathematics

Spectral analysis of random-to-random Markov chains

A.B. Dieker ^a, F.V. Saliola ^{b,*}

^a Industrial Engineering and Operations Research, Columbia University,
 500 W 120th St, New York, NY 10027, United States
 ^b Laboratoire de Combinatoire et d'Informatique Mathématique (LaCIM),
 Université du Québec à Montréal, CP 8888, Succ. Centre-ville, Montréal,
 Québec H3C 3P8, Canada

ARTICLE INFO

Article history:
Received 1 December 2016
Received in revised form 1 October 2017
Accepted 25 October 2017
Available online xxxx
Communicated by Ezra Miller

Keywords: Random-to-random shuffling Spectrum Discrete Markov chain Representation theory Symmetric group

ABSTRACT

We compute the eigenvalues and eigenspaces of random-torandom Markov chains. We use a family of maps which reveal a remarkable recursive structure of the eigenspaces, yielding an explicit and effective construction of all eigenbases starting from bases of the kernels.

© 2017 Elsevier Inc. All rights reserved.

Contents

1.	Introduction	428
	Acknowledgements	431
2.	The shuffling processes	432
	2.1 The shuffles	439

E-mail addresses: dieker@columbia.edu (A.B. Dieker), saliola.franco@uqam.ca (F.V. Saliola).

 $^{^{\}diamond}$ The second author acknowledges the support of a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant.

^{*} Corresponding author.

	2.2.	Decks of cards as words	432
	2.3.	Transition matrices	433
3.	Eigenv	alues	434
	3.1.	Eigenvalues and horizontal strips	435
	3.2.	Applications	438
	3.3.	Eigenvalues and the RSK correspondence	440
4.	Eigens	paces	443
	4.1.	Motivating examples	443
	4.2.	Lifting eigenvectors	448
	4.3.	Constructing eigenspaces and eigenbases	450
	4.4.	Frobenius characteristics of the eigenspaces	454
5.	Proofs	of Theorem 21 and Theorem 26	456
	5.1.	Outline of the proofs	457
	5.2.	Fourier transform reduction	458
	5.3.	An identity in the algebra of words	460
	5.4.	Restriction to Specht modules S^{λ}	464
	5.5.	Projection to the Specht module $S^{\lambda + \vec{e}_a}$	467
	5.6.	Reformulation of the projection morphism	472
	5.7.	Image of $R2R_n$	475
	5.8.	Construction of eigenspaces from kernels of $R2R_m$	476
Appen	idix A.	Tables of random-to-random eigenvalues	482
Refere	nces .		484

1. Introduction

Random-to-random Markov chains, also known as random insertion [34] and random to-random insertion [36], describe the random evolution of n (ordered) objects, some of which may be identical, if someone repeatedly removes an object at random and puts it back at a random position. One can think of the objects as being books on a shelf, entries in a database, characters in a word, or cards in a deck of cards. As such, the random-to-random Markov chain constitutes a canonical card shuffling model, and can be thought of as sequentially applying a random-to-top shuffle (choose a card at random and move it to the top) and a top-to-random shuffle (move the top card to a random position) at each step.

There are several fundamental questions concerning random-to-random shuffles that have withstood analysis. This is quite striking considering that these same questions have been answered for the related random-to-top and top-to-random shuffles, which play an instrumental role in the theory of card shuffling [11] and the theory of random walks on groups and semigroups [3,5,14,23,24,31]. This paper provides answers to some of these questions and new tools to investigate others.

Our results. This paper studies random-to-random Markov chains through a spectral lens. We introduce a family of maps that allow us to compute the eigenvalues and eigenspaces of random-to-random Markov chains. Our maps reveal a remarkable recursive structure of the eigenspaces, and yield an explicit and effective construction of all eigenbases starting from bases of the kernels.

Fig. 1 gives a high-level description of how our maps exploit the recursive nature of random-to-random Markov chains to construct its eigenbases. This paper introduces

Download English Version:

https://daneshyari.com/en/article/8905093

Download Persian Version:

https://daneshyari.com/article/8905093

<u>Daneshyari.com</u>