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1. Introduction

Random-to-random Markov chains, also known as random insertion [34] and random-
to-random insertion [36], describe the random evolution of n (ordered) objects, some of
which may be identical, if someone repeatedly removes an object at random and puts
it back at a random position. One can think of the objects as being books on a shelf,
entries in a database, characters in a word, or cards in a deck of cards. As such, the
random-to-random Markov chain constitutes a canonical card shuffling model, and can
be thought of as sequentially applying a random-to-top shuffle (choose a card at random
and move it to the top) and a top-to-random shuffle (move the top card to a random
position) at each step.

There are several fundamental questions concerning random-to-random shuffles that
have withstood analysis. This is quite striking considering that these same questions have
been answered for the related random-to-top and top-to-random shuffles, which play an
instrumental role in the theory of card shuffling [11] and the theory of random walks on
groups and semigroups [3,5,14,23,24,31]. This paper provides answers to some of these
questions and new tools to investigate others.

Our results. This paper studies random-to-random Markov chains through a spec-
tral lens. We introduce a family of maps that allow us to compute the eigenvalues and
eigenspaces of random-to-random Markov chains. Our maps reveal a remarkable recur-
sive structure of the eigenspaces, and yield an explicit and effective construction of all
eigenbases starting from bases of the kernels.

Fig. 1 gives a high-level description of how our maps exploit the recursive nature
of random-to-random Markov chains to construct its eigenbases. This paper introduces
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