Two-parameter version of Bourgain's inequality: Rational frequencies **

Ben Krause ${ }^{\text {a }}$, Mariusz Mirek ${ }^{\text {b,c,* }}$, Bartosz Trojan ${ }^{\text {d }}$
a California Institute of Technology, Pasadena, CA 91125, USA
b School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, USA
c Instytut Matematyczny, Uniwersytet Wroclawski, Plac Grunwaldzki 2/4, 50-384 Wroctaw, Poland
${ }^{\text {d }}$ Institute of Mathematics of the Polish Academy of Sciences, ul. Sniadeckich 8, 00-656 Warszawa, Poland

A R T I C L E I N F O

Article history:

Received 18 February 2016
Accepted 21 October 2017
Available online 14 November 2017
Communicated by C. Fefferman

Keywords:

Multi-parameter maximal functions
Littlewood-Paley theory
Oscillation semi-norms

A B S T R A C T

Our aim is to establish the first two-parameter version of Bourgain's maximal logarithmic inequality on $L^{2}\left(\mathbb{R}^{2}\right)$ for the rational frequencies. We achieve this by introducing a variant of a two-parameter Rademacher-Menschov inequality. The method allows us to control an oscillation seminorm as well.
© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let $A_{n}=\left(-2^{-n-1}, 2^{-n-1}\right)$ for $n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. Suppose that $\Lambda \subset \mathbb{R}$ is a finite set satisfying the following separation condition: for any $\lambda, \lambda^{\prime} \in \Lambda$, if $\lambda \neq \lambda^{\prime}$ then

[^0]\[

$$
\begin{equation*}
\left|\lambda-\lambda^{\prime}\right| \geq 1 \tag{1}
\end{equation*}
$$

\]

In [4], Bourgain established the following lemma.

Logarithmic lemma. There exists a constant $C>0$ such that for each $f \in L^{2}(\mathbb{R})$ we have

$$
\begin{equation*}
\left\|\sup _{n \in \mathbb{N}_{0}}\left|\sum_{\lambda \in \Lambda} \mathcal{F}^{-1}\left(\mathbb{1}_{A_{n}^{\lambda}} \mathcal{F} f\right)\right|\right\|_{L^{2}} \leq C(\log |\Lambda|)^{2}\|f\|_{L^{2}} \tag{2}
\end{equation*}
$$

where $A_{n}^{\lambda}=\lambda+A_{n}$, and \mathcal{F} is the Fourier transform operator on \mathbb{R}. Moreover, the implied constant is independent of the cardinality of the set Λ.

This logarithmic lemma was introduced by Bourgain to reduce some problems in ergodic theory having a number theoretic nature to questions in harmonic analysis (compare $[2,3]$ with [4]). To be more precise, let (X, \mathcal{B}, μ) be a σ-finite measure space and let $T: X \rightarrow X$ be an invertible measure preserving transformation. The classical Birkhoff's theorem (see [1]) states that for any $f \in L^{p}(X, \mu)$ with $p \geq 1$ the averages

$$
A_{N} f(x):=\frac{1}{N} \sum_{n=0}^{N-1} f\left(T^{n} x\right)
$$

converges μ-almost everywhere. With the aid of the logarithmic lemma Bourgain proved the pointwise convergence of

$$
A_{N}^{\mathcal{P}} f(x):=\frac{1}{N} \sum_{n=0}^{N-1} f\left(T^{\mathcal{P}(n)} x\right)
$$

for all $f \in L^{p}(X, \mu)$ and $p>1$; where, \mathcal{P} is a polynomial with integer coefficients. The lemma was applied to the sets

$$
\mathscr{R}_{s}=\left\{a / q \in[0,1] \cap \mathbb{Q}:(a, q)=1, \text { and } 2^{s} \leq q<2^{s+1}\right\}
$$

giving an acceptable loss with respect to s in (2) of the order s^{2} since $\left|\mathscr{R}_{s}\right| \leq 4^{s}$ (see [4] for more details).

In fact, in [4] the logarithmic lemma was proven in a much stronger form: for general frequencies without the separation condition (1). Not long afterwards, it was observed by Lacey (see [14]) that if $\Lambda \subset Q^{-1} \mathbb{Z}$ for some $Q \in \mathbb{N}$ and satisfies separation condition, then

$$
\begin{equation*}
\left\|\sup _{n \in \mathbb{N}_{0}}\left|\sum_{\lambda \in \Lambda} \mathcal{F}^{-1}\left(\mathbb{1}_{A_{n}^{\lambda}} \mathcal{F} f\right)\right|\right\|_{L^{2}} \leq C \log \log (Q \sqrt{|\Lambda|})\|f\|_{L^{2}} \tag{3}
\end{equation*}
$$

https://daneshyari.com/en/article/8905102

Download Persian Version:

https://daneshyari.com/article/8905102

Daneshyari.com

[^0]: को The authors thank the Hausdorff Research Institute for Mathematics in Bonn for support and hospitality during the Trimester Program "Harmonic Analysis and Partial Differential Equation". Mariusz Mirek was partially supported by the Schmidt Fellowship and the IAS Found. for Math. and by the National Science Center, NCN grant DEC-2015/19/B/ST1/01149.

 * Corresponding author.

 E-mail addresses: benkrause2323@gmail.com (B. Krause), mirek@math.ias.edu (M. Mirek), btrojan@impan.pl (B. Trojan).

