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Our aim is to establish the first two-parameter version of 
Bourgain’s maximal logarithmic inequality on L2(R2) for the 
rational frequencies. We achieve this by introducing a variant 
of a two-parameter Rademacher–Menschov inequality. The 
method allows us to control an oscillation seminorm as well.
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1. Introduction

Let An = (−2−n−1, 2−n−1) for n ∈ N0 = N ∪ {0}. Suppose that Λ ⊂ R is a finite set 
satisfying the following separation condition: for any λ, λ′ ∈ Λ, if λ �= λ′ then
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|λ− λ′| ≥ 1. (1)

In [4], Bourgain established the following lemma.

Logarithmic lemma. There exists a constant C > 0 such that for each f ∈ L2(R) we 
have ∥∥∥ sup

n∈N0

∣∣∣∑
λ∈Λ

F−1(1Aλ
n
Ff

)∣∣∣∥∥∥
L2

≤ C
(
log |Λ|

)2‖f‖L2 (2)

where Aλ
n = λ +An, and F is the Fourier transform operator on R. Moreover, the implied 

constant is independent of the cardinality of the set Λ.

This logarithmic lemma was introduced by Bourgain to reduce some problems in 
ergodic theory having a number theoretic nature to questions in harmonic analysis (com-
pare [2,3] with [4]). To be more precise, let (X, B, μ) be a σ-finite measure space and let 
T : X → X be an invertible measure preserving transformation. The classical Birkhoff’s 
theorem (see [1]) states that for any f ∈ Lp(X, μ) with p ≥ 1 the averages

ANf(x) := 1
N

N−1∑
n=0

f(Tnx)

converges μ-almost everywhere. With the aid of the logarithmic lemma Bourgain proved 
the pointwise convergence of

AP
Nf(x) := 1

N

N−1∑
n=0

f
(
TP(n)x

)
for all f ∈ Lp(X, μ) and p > 1; where, P is a polynomial with integer coefficients. The 
lemma was applied to the sets

Rs =
{
a/q ∈ [0, 1] ∩Q : (a, q) = 1, and 2s ≤ q < 2s+1}

giving an acceptable loss with respect to s in (2) of the order s2 since |Rs| ≤ 4s (see [4]
for more details).

In fact, in [4] the logarithmic lemma was proven in a much stronger form: for general 
frequencies without the separation condition (1). Not long afterwards, it was observed 
by Lacey (see [14]) that if Λ ⊂ Q−1Z for some Q ∈ N and satisfies separation condition, 
then ∥∥∥ sup

n∈N0

∣∣∣∑
λ∈Λ

F−1(1Aλ
n
Ff

)∣∣∣∥∥∥
L2

≤ C log log
(
Q
√

|Λ|
)
‖f‖L2 . (3)
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