The moduli space of polynomial maps and their fixed-point multipliers ${ }^{\text {st }}$

Toshi Sugiyama
Nada High School, Uozaki-kita-machi 8-5-1, Higashinada, Kobe 658-0082, Japan

A R T I C L E I N F O

Article history:

Received 18 May 2016
Received in revised form 25
February 2017
Accepted 10 October 2017
Communicated by Kenneth Falconer

MSC:

primary 37 F 10
secondary 14D20, 14C17
Keywords:
Complex dynamics
Moduli space
Fixed-point multiplier
Bezout's theorem
Intersection multiplicity
Finite branched covering

Abstract

We consider the family MP_{d} of affine conjugacy classes of polynomial maps of one complex variable with degree $d \geq 2$, and study the map $\Phi_{d}: \mathrm{MP}_{d} \rightarrow \widetilde{\Lambda}_{d} \subset \mathbb{C}^{d} / \mathfrak{S}_{d}$ which maps each $f \in \mathrm{MP}_{d}$ to the set of fixed-point multipliers of f. We show that the local fiber structure of the map Φ_{d} around $\bar{\lambda} \in \widetilde{\Lambda}_{d}$ is completely determined by certain two sets $\mathcal{I}(\lambda)$ and $\mathcal{K}(\lambda)$ which are subsets of the power set of $\{1,2, \ldots, d\}$. Moreover for any $\bar{\lambda} \in \widetilde{\Lambda}_{d}$, we give an algorithm for counting the number of elements of each fiber $\Phi_{d}^{-1}(\bar{\lambda})$ only by using $\mathcal{I}(\lambda)$ and $\mathcal{K}(\lambda)$. It can be carried out in finitely many steps, and often by hand.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let MP_{d} be the family of affine conjugacy classes of polynomial maps of one complex variable with degree $d \geq 2$, and $\mathbb{C}^{d} / \mathfrak{S}_{d}$ the set of unordered collections of d complex

[^0]numbers. Then the aim of this paper is to give a complete description of the fiber structure of the map
$$
\Phi_{d}: \mathrm{MP}_{d} \rightarrow \widetilde{\Lambda}_{d} \subset \mathbb{C}^{d} / \mathfrak{S}_{d}
$$
which maps each $f \in \mathrm{MP}_{d}$ to the set of fixed-point multipliers of f, except where $f \in \mathrm{MP}_{d}$ has multiple fixed points.

Since multipliers of fixed points have played a central role in the study of the complex dynamics, it is natural to ask to what extent fixed-point multipliers of f determine the original map f. For polynomial maps, since the set of fixed-point multipliers is invariant under the action of affine transformations, the question is to count the number of affine conjugacy classes of polynomial maps when the set of its fixed-point multipliers are given. It is formulated in the following form: how many elements there are on each fiber of the above map $\Phi_{d}: \mathrm{MP}_{d} \rightarrow \mathbb{C}^{d} / \mathfrak{S}_{d}$. Here, since the set of fixed-point multipliers always satisfies a certain relation by the fixed point theorem (see Proposition 1.1), the image of Φ_{d} is contained in a certain hyperplane $\widetilde{\Lambda}_{d}$ in $\mathbb{C}^{d} / \mathfrak{S}_{d}$. Hence the main object of our study is the map $\Phi_{d}: \mathrm{MP}_{d} \rightarrow \widetilde{\Lambda}_{d}$.

For $d=2$, it is easily verified that Φ_{2} is bijective. In the case $d=3$, Milnor [11] showed that Φ_{3} is also bijective, which was the starting point of his study of the complex dynamics of cubic polynomials. For $d \geq 4$, Fujimura and Nishizawa have long studied the map Φ_{d} in their series of papers such as [16], [3] and [4]. Especially their achievement is summarized in Fujimura's paper [4], which includes the following:

- Φ_{d} is not surjective for $d \geq 4$. Moreover for $d=4$ or 5 , she found all $\bar{\lambda} \in \widetilde{\Lambda}_{d}$ whose inverse image of Φ_{d} is empty.
- Generic fiber of Φ_{d} consists of $(d-2)$! points. Moreover if $\Phi_{d}^{-1}(\bar{\lambda})$ is finite, then $\#\left(\Phi_{d}^{-1}(\bar{\lambda})\right) \leq(d-2)$! always holds.
- For $d=4$, she found $\#\left(\Phi_{4}^{-1}(\bar{\lambda})\right)$ for all $\bar{\lambda} \in \widetilde{\Lambda}_{4}$.

Here, we denote the cardinality of a set X by $\#(X)$. Similar results for rational maps are given by Milnor in [13, p. 152, Problem 12-d] and [12].

Based on the results above, this paper provides an algorithm for counting the number of elements of each fiber $\Phi_{d}^{-1}(\bar{\lambda})$ for all $\bar{\lambda}=\left\{\lambda_{1}, \ldots, \lambda_{d}\right\} \in \widetilde{\Lambda}_{d}$ and for all $d \geq 4$ except when $\lambda_{i}=1$ for some i. In practice, for each $\lambda=\left(\lambda_{1}, \ldots, \lambda_{d}\right) \in \Lambda_{d} \subset \mathbb{C}^{d}$ with $\lambda_{i} \neq 1$, certain two subsets $\mathcal{I}(\lambda), \mathcal{K}(\lambda)$ of the power set of $\{1,2, \ldots, d\}$ are defined, and the number of elements of a fiber $\Phi_{d}^{-1}(\bar{\lambda})$ is completely determined by $\mathcal{I}(\lambda)$ and $\mathcal{K}(\lambda)$. Moreover we give an algorithm for counting the number $\#\left(\Phi_{d}^{-1}(\bar{\lambda})\right)$ only by using $\mathcal{I}(\lambda)$ and $\mathcal{K}(\lambda)$ (see Main Theorems I, III, Definition 1.7 and Section 2). The algorithm can be carried out in finitely many steps, and only by hand. Moreover in Main Theorem II we show that the local fiber structure of Φ_{d} around $\bar{\lambda}$ is also determined by $\mathcal{I}(\lambda)$ and $\mathcal{K}(\lambda)$.

We shall provide some more concerning results.

https://daneshyari.com/en/article/8905109

Download Persian Version:

https://daneshyari.com/article/8905109

Daneshyari.com

[^0]: 4. This work was done when the author was a graduate student of Kyoto University.

 E-mail address: sugiyama.toshi@gmail.com.

