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This paper is devoted to the study of some fundamental
problems on modulus and extremal length of curve families,
capacity, and n-harmonic functions in the Euclidean space R™.
One of the main goals is to establish the existence, uniqueness,
and boundary behavior of the extremal function for the
conformal capacity cap(A4, B;2) of a capacitor in R™. This
generalizes some well known results and has its own interests
in geometric function theory and potential theory. It is also
used as a major ingredient in this paper to establish a
sharp upper bound for the quasiextremal distance (or QED)
constant M () of a domain in terms of its local boundary
quasiconformal reflection constant H(2), a bound conjectured
by Shen in the plane. Along the way, several interesting results
are established for modulus and extremal length. One of them
is a decomposition theorem for the extremal length A(A, B; Q)
of the curve family joining two disjoint continua A and B in
a domain .
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1. Introduction

In this paper, we study some fundamental problems on modulus, extremal length,
capacity, and n-harmonic functions in the Euclidean space. These concepts play crucial
roles in geometric function theory and potential theory.

1.1. Modulus, extremal length, and capacity

Throughout this paper, we let R” denote the Euclidean n-space and R its one point
compactification R™ U {co}. A ball centered at = € R™ of radius » > 0 will be denoted
by B(z,r). The boundary and closure of a set A in R™ are denoted by A and A,
respectively.

For a curve family T in R™, its (conformal) modulus mod(T") is defined as

d(T") = inf " d
mod(r) = it [ pdm
RTL

where the infimum is taken over the set, denoted by adm(T), of all non-negative Borel
measurable functions p : R® — R such that f7 pds > 1 for any locally rectifiable curve
v € I'. The extremal length A(T') of T" is defined in terms of modulus as follows:

A(T) = (mod(T)) 7.

Note that in the plane R?, extremal length is just the reciprocal of modulus. In the plane,
the concept of extremal length (or modulus) was introduced by Ahlfors and Beurling in
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