

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Extremal function for capacity and estimates of QED constants in $\mathbb{R}^{n \, \stackrel{\wedge}{\Rightarrow}}$

Tao Cheng a,*, Shanshuang Yang b

ARTICLE INFO

Article history:
Received 24 October 2014
Received in revised form 27 October 2016
Accepted 28 October 2016
Available online xxxx
Communicated by Gang Tian

MSC: 30C62 30C70

Keywords:
Modulus
Extremal length
Capacity
Extremal function
QED constant
Reflection constant

ABSTRACT

This paper is devoted to the study of some fundamental problems on modulus and extremal length of curve families, capacity, and *n*-harmonic functions in the Euclidean space \mathbb{R}^n . One of the main goals is to establish the existence, uniqueness, and boundary behavior of the extremal function for the conformal capacity $cap(A, B; \Omega)$ of a capacitor in \mathbb{R}^n . This generalizes some well known results and has its own interests in geometric function theory and potential theory. It is also used as a major ingredient in this paper to establish a sharp upper bound for the quasiextremal distance (or QED) constant $M(\Omega)$ of a domain in terms of its local boundary quasiconformal reflection constant $H(\Omega)$, a bound conjectured by Shen in the plane. Along the way, several interesting results are established for modulus and extremal length. One of them is a decomposition theorem for the extremal length $\lambda(A, B; \Omega)$ of the curve family joining two disjoint continua A and B in a domain Ω .

 \odot 2016 Elsevier Inc. All rights reserved.

E-mail addresses: tcheng@math.ecnu.edu.cn (T. Cheng), syang@mathcs.emory.edu (S. Yang).

^a Department of Mathematics, East China Normal University, Shanghai, 200241, People's Republic of China

b Department of Mathematics and Computer Sciences, Emory University, Atlanta, GA 30322, USA

 $^{^{\,\,\,}}$ The first author is partially supported by NNSF (No. 11371268 and No. 11471117). The second author is partially supported by NNSF (No. 11471117) and by PERS of Emory.

^{*} Corresponding author.

Contents

1.	Introduction		930
	1.1.	Modulus, extremal length, and capacity	930
	1.2.	QED domains	931
	1.3.	Statement of main results	932
	1.4.	Outline	935
2.	Modu	lus and extremal length	935
3.	Extre	mal function for capacity	938
	3.1.	Construction of the extremal function	940
	3.2.	Extremal property and uniqueness of the function u	941
	3.3.	Boundary behavior of the extremal function	942
	3.4.	Completion of the proof of Theorem 1.1	945
	3.5.	Extension of the extremal function to the boundary	946
4.	Decon	nposition theorem	947
5.	Comp	arison theorem for extremal distance	949
6.	Proof	of Theorem 1.2	953
Acknowledgments			956
References			956

1. Introduction

In this paper, we study some fundamental problems on modulus, extremal length, capacity, and *n*-harmonic functions in the Euclidean space. These concepts play crucial roles in geometric function theory and potential theory.

1.1. Modulus, extremal length, and capacity

Throughout this paper, we let \mathbb{R}^n denote the Euclidean n-space and $\overline{\mathbb{R}}^n$ its one point compactification $\mathbb{R}^n \cup \{\infty\}$. A ball centered at $x \in \mathbb{R}^n$ of radius r > 0 will be denoted by B(x,r). The boundary and closure of a set A in $\overline{\mathbb{R}}^n$ are denoted by ∂A and \overline{A} , respectively.

For a curve family Γ in \mathbb{R}^n , its (conformal) modulus $\operatorname{mod}(\Gamma)$ is defined as

$$\operatorname{mod}(\Gamma) = \inf_{\rho \in adm(\Gamma)} \int_{\mathbb{D}_n} \rho^n dm$$

where the infimum is taken over the set, denoted by $adm(\Gamma)$, of all non-negative Borel measurable functions $\rho: \mathbb{R}^n \to \mathbb{R}$ such that $\int_{\gamma} \rho ds \geq 1$ for any locally rectifiable curve $\gamma \in \Gamma$. The extremal length $\lambda(\Gamma)$ of Γ is defined in terms of modulus as follows:

$$\lambda(\Gamma) = (\operatorname{mod}(\Gamma))^{\frac{1}{1-n}}.$$

Note that in the plane \mathbb{R}^2 , extremal length is just the reciprocal of modulus. In the plane, the concept of extremal length (or modulus) was introduced by Ahlfors and Beurling in

Download English Version:

https://daneshyari.com/en/article/8905175

Download Persian Version:

https://daneshyari.com/article/8905175

<u>Daneshyari.com</u>