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We prove the analytic continuation of the resolvent of the 
Laplacian on asymptotically hyperbolic spaces on differential 
forms, including high energy estimates in strips. This is 
achieved by placing the spectral family of the Laplacian within 
the framework developed, and applied to scalar problems, by 
the author recently, roughly by extending the problem across 
the boundary of the compactification of the asymptotically 
hyperbolic space in a suitable manner. The main novelty is 
that the non-scalar nature of the operator is dealt with by 
relating it to a problem on an asymptotically Minkowski space 
to motivate the choice of the extension across the conformal 
boundary.
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1. Introduction

Suppose that (X, g) is an n-dimensional asymptotically hyperbolic space with an 
even metric in the sense of Guillarmou [12]. That is, g is Riemannian on X, X has 
a compactification X with boundary defining function x, and there is a neighborhood 
U = [0, ε)x×∂X of ∂X on which g is of the warped product form dx

2+h
x2 , with h = h(x, .)

a smooth family of symmetric 2-cotensors on ∂X whose Taylor series at x = 0 is even, 
and h(0, .) is positive definite. We refer to [12] for a more geometric version, and to 
Graham and Lee [11, Section 5] for how to put an arbitrary asymptotically hyperbolic 
metric, i.e. one for which x2g is Riemannian on X and |dx|x2g = 1 at x = 0, into a 
warped product form. We write Xeven for X equipped with the even smooth structure, 
i.e. using coordinate charts [0, ε2)μ × O, O a coordinate chart in ∂X, in the product 
decomposition above, where μ = x2. (So a C∞ function on X is in C∞(Xeven) if and only 
if its Taylor series has only even terms at x = 0.)

Let Δk denote the Laplacian on k-forms on the complete Riemannian manifold (X, g). 
Thus, Δk with domain C∞

c (X; ΛkX) is essentially self-adjoint, and is indeed non-negative, 
so in particular (Δk − λ)−1 exists for λ ∈ C \ [0, ∞). We show that

Theorem 1.1. The operators

δd(Δk − σ2 − (n− 2k − 1)2/4)−1, dδ(Δk − σ2 − (n− 2k + 1)2/4)−1

have a meromorphic continuation from Im σ � 1 to C with finite rank poles and with 
non-trapping, resp. mildly trapping, high energy estimates in strips | Im σ| < C if g is a 
non-trapping, resp. mildly trapping, metric.

Here recall that g non-trapping means that all geodesics approach ∂X as the time 
parameter goes to ±∞, while mildly trapping, defined in [21, Section 2], is an analytic 
assumption on a model problem near the trapping (roughly polynomial bounds for the 
model resolvent) and the nearby bicharacteristic flow; we recall this briefly at the end 
of Section 4. Non-trapping high-energy estimates mean that for all C0 > 0 and s with 
s + 3/2 > C0 there is C > 0 and R > 0 such that

‖δd(Δk − σ2 − (n− 2k − 1)2/4)−1‖L(Ys+1
δd ,X s

δd) ≤ C|σ|,

‖dδ(Δk − σ2 − (n− 2k + 1)2/4)−1‖L(Ys+1
dδ ,X s

dδ)
≤ C|σ|,

| Im σ| < C0, |Reσ| > R,

(1.1)

where the norms are on suitable (high-energy) Sobolev spaces, namely

X s
δd = x−ıσ+(n−2k−1)/2Hs

|σ|−1(Xeven; ΛkXeven),

Ys+1
δd = x−ıσ+(n−2k−1)/2+2Hs+1

|σ|−1(Xeven; ΛkXeven),
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