Skew-signings of positive weighted digraphs

Kawtar Attas, Abderrahim Boussaïri*, Mohamed Zaidi
Faculté des Sciences Aïn Chock, Département de Mathématiques et Informatique, Laboratoire de Topologie, Algèbre, Géométrie et Mathématiques discrètes, Km 8 route d'El Jadida, BP 5366 Maarif, Casablanca, Maroc

Received 17 April 2017; revised 2 November 2017; accepted 17 January 2018
Available online 3 February 2018

Abstract

An arc-weighted digraph is a pair (D, ω) where D is a digraph and ω is an arc-weight function that assigns to each arc $u v$ of D a nonzero real number $\omega(u v)$. Given an arc-weighted digraph (D, ω) with vertices v_{1}, \ldots, v_{n}, the weighted adjacency matrix of (D, ω) is defined as the $n \times n$ matrix $A(D, \omega)=\left[a_{i j}\right]$ where $a_{i j}=\omega\left(v_{i} v_{j}\right)$ if $v_{i} v_{j}$ is an arc of D, and 0 otherwise. Let (D, ω) be a positive arc-weighted digraph and assume that D is loopless and symmetric. A skew-signing of (D, ω) is an arc-weight function ω^{\prime} such that $\omega^{\prime}(u v)= \pm \omega(u v)$ and $\omega^{\prime}(u v) \omega^{\prime}(v u)<0$ for every arc $u v$ of D. In this paper, we give necessary and sufficient conditions under which the characteristic polynomial of $A\left(D, \omega^{\prime}\right)$ is the same for all skew-signings ω^{\prime} of (D, ω). Our main theorem generalizes a result of Cavers et al. (2012) about skew-adjacency matrices of graphs.

Keywords: Arc-weighted digraphs; Skew-signing of a digraph; Weighted adjacency matrix

Mathematics Subject Classification: 05C22; 05C31; 05C50

1. Introduction

A directed graph or, more simply, a digraph D is a pair $D=(V, E)$ where V is a set of vertices and E is a set of ordered pairs of vertices called $\operatorname{arcs.}$ For $u, v \in V$, the $\operatorname{arc} a=(u, v)$

[^0]
https://doi.org/10.1016/j.ajmsc.2018.01.001
1319-5166 © 2018 The Authors. Production and Hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
of D is denoted by $u v$. An arc of the form $u u$ is called a loop of D. A loopless digraph is one containing no loops. A symmetric digraph is a digraph such that if $u v$ is an arc then $v u$ is also an arc. Given a symmetric digraph $D=(V, E)$ and a subdigraph $H=(W, F)$ of D, we denote by H^{*} the subdigraph of D whose vertex set is W and arc set is $\{v u: u v \in F\}$.

Let G be a simple undirected and finite graph. An orientation of G is an assignment of a direction to each edge of G so that we obtain a directed graph \vec{G}. Let \vec{G} be an orientation of G. With respect to a labeling v_{1}, \ldots, v_{n} of the vertices of G, the skew-adjacency matrix of \vec{G} is the $n \times n$ real skew-symmetric matrix $S(\vec{G})=\left[s_{i j}\right]$, where $s_{i j}=1$ and $s_{j i}=-1$ if $v_{i} v_{j}$ is an arc of \vec{G}, otherwise $s_{i j}=s_{j i}=0$. The skew-characteristic polynomial of \vec{G} is defined as the characteristic polynomial of $S(\vec{G})$. This definition is correct because skew-adjacency matrices of \vec{G} with respect to different labelings are permutationally similar and so have the same characteristic polynomial.

There are several recent works about skew-characteristic polynomials of oriented graphs, one can see for example [1,3-6,10]. An open problem is to find the number of possible orientations with distinct skew-characteristic polynomials of a given graph G. In particular it is of interest to know whether all orientations of a graph G can have the same skewcharacteristic polynomial. The following theorem, obtained by Cavers et al. [3] gives an answer to this question.

Theorem 1.1. The orientations of a graph G all have the same skew-characteristic polynomial if and only if G has no cycles of even length.

A similar result to this theorem was obtained by Liu and Zhang [7]. They proved that all orientations of a graph G have the same permanental polynomial if and only if G has no cycles of even length.

In this work, we will extend Theorem 1.1 to positive weighted loopless and symmetric digraphs (which we abbreviate to pwls-digraphs). An arc-weighted digraph or more simply a weighted digraph is a pair (D, ω) where D is a digraph and ω is a arc-weight function that assigns to each arc $u v$ of D a nonzero real number $\omega(u v)$, called the weight of the arc $u v$. Let (D, ω) be a weighted digraph with vertices v_{1}, \ldots, v_{n}. The weighted adjacency matrix of (D, ω) is defined as the $n \times n$ matrix $A(D, \omega)=\left[a_{i j}\right]$ where $a_{i j}=\omega\left(v_{i} v_{j}\right)$, if $v_{i} v_{j}$ is an arc of D and 0 otherwise. Let (D, ω) be a pwls-digraph. A skew-signing of (D, ω) is an arc-weight function ω^{\prime} such that $\omega^{\prime}(u v)= \pm \omega^{\prime}(u v)$ and $\omega^{\prime}(u v) \omega^{\prime}(v u)<0$ for every arc $u v$ of D.

Our aim is to characterize the pwls-digraphs (D, ω) for which the characteristic polynomial of $A\left(D, \omega^{\prime}\right)$ is the same for all skew-signings ω^{\prime} of (D, ω). This characterization involves directed cycles in D. Recall that a directed cycle of length $t>0$ is a digraph with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}$ and arcs $v_{1} v_{2}, \ldots, v_{t-1} v_{t}, v_{t} v_{1}$. Throughout this paper, we use the term "cycle" to refer to a "directed cycle" in a digraph. A cycle of length $t=2$ is called a digon. A cycle is odd (resp. even) if its length is odd (resp. even). Our main result is the following theorem.

Theorem 1.2. Let (D, ω) be a pwls-digraph. Then the following statements are equivalent:
(i) The characteristic polynomial of $\left(D, \omega^{\prime}\right)$ is the same for all skew-signings ω^{\prime} of (D, ω).
(ii) D has no even cycles of length more than 2 and $A(D, \omega)=\Delta^{-1} S \Delta$ where S is a nonnegative symmetric matrix with zero diagonal and Δ is a diagonal matrix with positive diagonal entries.

https://daneshyari.com/en/article/8905202

Download Persian Version:
https://daneshyari.com/article/8905202

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: kawtar.attas@gmail.com (K. Attas), aboussairi@hotmail.com (A. Boussaïri), zaidi.fsac@gmail.com (M. Zaidi).
 Peer review under responsibility of King Saud University.

