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We consider a biological population whose environment varies 
periodically in time, exhibiting two very different “seasons”: 
one is favorable and the other one is unfavorable. For mono-
tone differential models with concave nonlinearities, we ad-
dress the following question: the system’s period being fixed, 
under what conditions does there exist a critical duration for 
the unfavorable season? By “critical duration” we mean that 
above some threshold, the population cannot sustain and ex-
tincts, while below this threshold, the system converges to a 
unique periodic and positive solution. We term this a “sharp 
seasonal threshold property” (SSTP, for short).
Building upon a previous result, we obtain sufficient condi-
tions for SSTP in any dimension and apply our criterion to 
a two-dimensional model featuring juvenile and adult popu-
lations of insects.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

We study differential dynamical systems arising from nonlinear periodic positive dif-
ferential equations of the form
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dx

dt
= F (t, x), (1.1)

where F is monotone and concave in x. These systems exhibit well-known contraction 
properties when F is continuous (see [7], [9], [10]). We extend in Theorem 1 these prop-
erties to non-linearities that are only piecewise-continuous in time. This extension is 
motivated by the study of typical seasonal systems in population dynamics.

We denote by θ ∈ [0, 1] the proportion of the year spent in unfavorable season. Then, 
we convene that time t belongs to an unfavorable (resp. a favorable) season if nT ≤ t <
(n + θ)T (resp. if (n + θ)T ≤ t < (n + 1)T ) for some n ∈ Z+. In other words, we study 
the solutions to:

dX

dt
= G(πθ(t), X), πθ(t) =

{
πU if t

T − � t
T � ∈ [0, θ),

πF if t
T − � t

T � ∈ [θ, 1),
(1.2)

for some G : P × RN → RN , with πU , πF ∈ P where P is the parameter space. We are 
looking for conditions ensuring that a sharp seasonal threshold property holds, that is:

∃θ∗ ∈ [0, 1] such that

⎧⎪⎪⎨⎪⎪⎩
if θ < θ∗, ∃!q : R+ → RN , T -periodic, q � 0 and
∀X0 ∈ RN

+\{0}, X converges to q,

if θ > θ∗, ∀X0 ∈ RN
+ , X converges to 0.

(SSTP)

Ecologically, the respective duration of dry and wet seasons is crucial for population 
sustainability in various species. The property (SSTP) means that if the dry season is 
longer than θ∗T then the population collapses and if it is shorter than the population 
densities will tend to be periodic.

Assume that F (t, 0) ≡ 0. Thanks to the contraction properties of concave nonlinear-
ities, the whole problem reduces to the study of the Floquet eigenvalue with maximum 
modulus of the linearization of (1.1) at X = 0:

dz

dt
= DxF (t, 0)z. (1.3)

In fact, this eigenvalue is equal to the spectral radius of the Poincaré application for (1.3), 
which we compute here for piecewise-autonomous systems.

Our proof uses the Perron–Frobenius theorem and relies on the Perron eigenvalue and 
(left and right) eigenvectors. The importance of this eigenvalue for quantifying the effects 
of seasonality has been acknowledged continuously in mathematical biology in at least 
three application fields: circadian rhythms (in particular in connection with cell division 
and tumor growth), harvesting and epidemiology.

It was noted in [5] that Floquet eigenvalue with maximum modulus of (1.3) is always 
larger that the Perron eigenvalue of some averaged (over a period) matrix F defined from 
the entries of DxF (t, 0). There has been a continued interest in this eigenvalue for linear 
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