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Our first aim in this paper is to deal with asymptotic behavior 
of Poisson integrals in a cylinder. Next Carleman’s formula for 
harmonic functions in it is also proved. As an application of 
them, we finally give the integral representation of harmonic 
functions in a cylinder.
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1. Introduction and main results

Let R be the set of all real numbers. The boundary and the closure of a set E in 
n-dimensional Euclidean space Rn (n ≥ 2) are denoted by ∂E and E respectively. For 
positive functions h1 and h2, we say that h1 � h2 if h1 ≤ ch2 for some constant c > 0. 
If h1 � h2 and h2 � h1, then we say that h1 ≈ h2.
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Let Δn be the Laplace operator and Ω be a bounded domain in Rn−1 with smooth 
boundary ∂Ω. Consider the Dirichlet problem (see [9, p. 41])

(Δn−1 + λ)ϕ = 0 on Ω,

ϕ = 0 on ∂Ω.

We denote the least positive eigenvalue of this boundary value problem by λ and the 
normalized positive eigenfunction corresponding to λ by ϕ,

∫
Ω

ϕ2(X)dΩ = 1,

where X ∈ Ω and dΩ is the (n − 1)-dimensional volume element.
The set

Ω × R = {P = (X, y) ∈ Rn;X ∈ Ω, y ∈ R}

in Rn is simply denoted by Tn(Ω). We call it a cylinder (see [3,11,12]). In the following, 
we denote the sets Ω × I and ∂Ω × I with an interval I on R by Tn(Ω; I) and Sn(Ω; I)
respectively. Hence Sn(Ω; R) denoted simply by Sn(Ω) is ∂Tn(Ω).

In order to make the subsequent consideration simpler, we put a rather strong as-
sumption on Ω throughout this paper: if n ≥ 3, then Ω is a C2,α-domain (0 < α < 1) in 
Rn−1 surrounded by a finite number of mutually disjoint closed hypersurfaces (e.g. see 
[4, p. 88–89] for the definition of C2,α-domain).

Let GΩ(P, Q) be the Green function of Tn(Ω) (P, Q ∈ Tn(Ω)). Then the ordinary 
Poisson kernel in Tn(Ω) is defined by

PIΩ(P,Q) = 1
cn

∂GΩ(P,Q)
∂nQ

,

where ∂/∂nQ denotes the differentiation at Q ∈ Sn(Ω) along the inward normal into 
Tn(Ω) for any P ∈ Tn(Ω). Here, c2 = 2 and cn = (n − 2)wn when n ≥ 3, where wn

is the surface area of the unit sphere in Rn. It follows from our assumption on Ω that 
PIΩ(P, Q) is continuous on Sn(Ω) (see [4, Th. 6.15]).

The Poisson integral PIΩ[g](P ) of g in Tn(Ω) is defined as follows

PIΩ[g](P ) =
∫

Sn(Ω)

PIΩ(P,Q)g(Q)dσQ,

where g(Q) is a locally integrable function on Sn(Ω) and dσQ is the surface area element 
on Sn(Ω).

Let h(P ) be a function in Tn(Ω), we use the stand notations h+ = max{h, 0} and 
h− = − min{h, 0}. The integral



Download English Version:

https://daneshyari.com/en/article/8905242

Download Persian Version:

https://daneshyari.com/article/8905242

Daneshyari.com

https://daneshyari.com/en/article/8905242
https://daneshyari.com/article/8905242
https://daneshyari.com

