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Abstract

We briefly recall a fundamental exterior differential system of Riemannian
geometry and apply it to the case of three dimensions. Here we find new global
tensors and intrinsic invariants of oriented Riemaniann 3-manifolds. In parti-
cular, we develop the study of ∇Ric . The exterior differential system leads to
a remarkable Weingarten type equation for immersed surfaces in hyperbolic 3-
space. A new independent proof for low dimensions of the structural equations
gives new insight on the intrinsic exterior differential system.

Key Words: tangent sphere bundle, Riemaniann metric, structure group, Euler-
Lagrange system, 3-manifold.

MSC 2010: Primary: 58A32; Secondary: 58A15, 53C20, 53C28

1 A fundamental differential system

This article presents the fundamental exterior differential system of Riemannian geo-
metry introduced in [7], now developed on the 3-dimensional case.

The intrinsic structure found in [7] consists, in general, on a natural set of differential
forms α0, . . . , αn existing on the total space S of the unit tangent sphere bundle SM −→
M of any given oriented Riemannian n + 1-manifold M . It is well-known that S is a
contact Riemannian manifold with the Sasaki metric.

The theory applied to Riemannian surfaces is classical, as we shall recall next,
considering the case n = 1. Indeed, the famous structural equations due to Cartan
give a global coframing on S, the total space of the tangent circle bundle over a surface
M , with contact 1-form θ and two 1-forms α0 and α1. Denoting by c the Gauss
curvature of M , we find the following equations e.g. in [22, pp. 168–169]:

dθ = α1 ∧ α0,

dα0 = θ ∧ α1 dα1 = c α0 ∧ θ.
(1)
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