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The multiplicatively advanced differential equations (MADEs) of form f (n)(t) = α f (βt) with 
α �= 0, β > 1 are studied along with a class of their solutions of type fμ,λ(t) defined 
on [0, ∞). For λ ∈ Q+, μ ∈ R, the solutions fμ,λ(t) are extended to (−∞, ∞) in a non-
unique manner to obtain Schwartz wavelet solutions Fμ,λ(t) of the original MADE, with 
all moments of Fμ,λ(t) vanishing. Examples are studied in detail. The Fourier transform 
of each Fμ,λ(t) is computed and, in a number of examples, is related to the Jacobi theta 
function. Additional conditions sufficient for the uniqueness of certain MADE initial value 
problems are given. Conditions for decay and non-decay at −∞ are obtained. Decay rates 
at ±∞ in terms of familiar functions are established.
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r é s u m é

Des équations différentielles multiplicativement avancées (MADE) de la forme f (n)(t) =
α f (βt) avec α �= 0, β > 1 sont étudiées dans le cadre des solutions de type fμ,λ(t)
définies sur [0, ∞). Pour λ ∈Q+, μ ∈R, les solutions fμ,λ(t) sont prolongées sur (−∞, ∞)

d’une manière non unique pour obtenir des solutions ondelettes dans l’espace de Schwartz 
Fμ,λ(t) de l’originale MADE, avec tous les moments de Fμ,λ(t) nuls. Des exemples sont 
étudiés en détail. La transformée de Fourier de chaque Fμ,λ(t) est calculée et, dans 
un certain nombre d’exemples, est liée à la fonction thêta de Jacobi. Des conditions 
supplémentaires suffisantes pour l’unicité de la solution de certaines MADE avec condition 
initiale sont données. Les conditions de décroissance et de non-décroissance à −∞ sont 
obtenues. Les taux de décroissance à ±∞ en termes de fonctions familières sont établis.
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1. Introduction: multiplicatively advanced differential equations (MADEs)

This article is a study of homogeneous multiplicatively advanced differential equations (MADEs) of the form

f (n)(t) = α f (βt) or equivalently f (n)(t) − α f (βt) = 0, (1)

where α �= 0 and β > 1. Note that the argument βt in the second term of (1) is multiplicatively advanced by the advancing 
parameter β > 1, making (1) a MADE. We shall approach this study through the examination of a new class of functions 
fμ,λ(t) given in the following definition.

Definition 1.1. Let q > 1, μ ∈R, and λ > 0. Then for t ≥ 0, the function fμ,λ(t) is given by

fμ,λ(t) ≡
∞∑

m=−∞
(−1)m e−qmt

qm(m−μ)/λ
. (2)

From (2), observe that | fμ,λ(t)| ≤ ∑∞
m=−∞ 1/qm(m−μ)/λ < ∞. So fμ,λ(t) is bounded and converging uniformly on t ∈

[0, ∞). For λ rational, the fμ,λ(t) satisfy the MADE (18) below, which by choice of parameters involved can be shown to be 
equivalent to (1). This equivalence is shown in the Remark 7 following Theorem 2.2 below. Note that if one complexifies the 
argument t to obtain the complex argument z in (2), then the above bound | fμ,λ(z)| ≤ ∑∞

m=−∞ 1/qm(m−μ)/λ < ∞ still holds 
for z in the right half-plane R(z) ≥ 0. As the uniform limit of the analytic functions given by the truncated summations (for 
m ranging from −N to N in (2) as N → ∞), fμ,λ(z) is analytic [28] on the open right half-plane R(z) > 0. Thus fμ,λ(t) is 
real analytic in t on (0, ∞) and it is C∞ in t on [0, ∞). For these values of t , it is also real analytic in the parameters μ
and λ, but only C∞ in the parameter q > 1.

After obtaining the properties of fμ,λ(t) on the positive half-line [0, ∞) including the MADE that each solves, the fμ,λ(t)
are extended to Fμ,λ(t) globally defined and C∞ on all of the real line. These Fμ,λ(t) also satisfy the original MADE satisfied 
by fμ,λ(t). The extensions Fμ,λ(t) are shown to be decaying rapidly at ±∞ and are in fact Schwartz wavelet functions 
on R. As decaying global functions, they are amenable to Fourier transform computations, which are obtained and seen to 
be related to the Jacobi theta function in a range of cases. Ultimately, this study expands the connection between global 
solutions of MADEs such as (1) with the harmonic analysis of Schwartz wavelets, which, in turn, can be connected with 
the special function theory of the Jacobi theta function. As a first such connection, we point out that the formal MacLaurin 
series for fμ,λ(t) is given by

∑
n≥0

f (n)
μ,λ(0)

n! zn =
∑
n≥0

(−1)nθ(q2/λ;−q(μ+nλ−1)/λ)

n! zn , (3)

where θ(q; u) is the Jacobi theta function given by (22) below, and where equality in (3) follows from (12) and (28). As will 
be seen in general in the proof of Proposition 2.3 below, the formal MacLaurin series given by (3) has radius of convergence 
0 when fμ,λ(t) is not flat at t = 0. Hence, fμ,λ(t) and its extension Fμ,λ(t) cannot be real analytic at t = 0. Thus, in this 
study we restrict Fμ,λ(t) to t on the real line in the C∞(R) case, as opposed to attempting to extend the fμ,λ(z) analytically 
beyond the imaginary axis in the complex plane, which in many cases is problematic via the Remark 4 at the end of this 
section. In special cases, methods of extending exponential series beyond a natural boundary, such as the imaginary axis 
encountered in (2), are well studied, see for instance [5]. Also, restriction of fμ,λ(z) to the imaginary axis z = it yields an 
almost periodic function of t , as per p. 289 of [1], see also [2], [3].

While the MADE (1) may at first appear counter-intuitive, its solutions for special values of μ and λ are generating a 
number of interesting applications. These special case applications include: modeling tsunami waves [25]; modeling rogue 
waves [25]; obtaining Schwartz functions qCos(t) and q Sin(t) which well-approximate cos(t) and sin(t), respectively, on 
compact sets as q → 1+ [24], as illustrated in Fig. 1; obtaining smooth Schwartz approximations of the Haar wavelet [27]; 
obtaining Schwartz approximations of truncated Legendre polynomials [26], [27]; and obtaining Schwartz approximations 
of spherical Bessel functions of the first kind [27]. The majority of these solutions also turn out to be Schwartz wavelets 
generating wavelet frames for L2(R), and in turn these solutions comprise a rich set within each Lp(R) space and have 
good decay and localization while satisfying perturbations of classic differential equations (see Remark 8 after Theorem 2.2). 
The solutions of (1) will also provide further interesting applications to physics. Each of the solutions described in the 
applications above relate to special function theory in the sense that all of them have Fourier transforms that can be 
expressed in terms of the Jacobi theta function (see (22) below). A pattern is emerging that clarifies the relation of solutions 
of MADEs such as (1) to: wavelets and wavelet frames, special function theory, approximation theory, self-similarity, and 
physical applications.

Thus the MADE (1) and the functions (2) deserve study in their own right. We note that Definition 1.1 is motivated by and 
generalizes: (i) the results in [22], where the mother wavelet K (t) = f−1,2(t) was shown to satisfy the MADE K ′(t) = K (qt)
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