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norm inequality [|M|| < | 7, M;; + Y w;l|, where @; (i=1,...,m—1) are quantities
involving the width of numerical ranges. This extends the main theorem of Bourin and
Mhanna (2017) [4] to a higher number of blocks.
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RESUME

Toute matrice positive M = (M,;j)lf”j:1 écrite en blocs carrés M;; satisfait ||[M| <

11, M + Z}“:jl w;il|, ol les quantités w;j, i =1,...,m — 1, font intervenir la largeur

du domaine des valeurs numériques. Ceci étend le théoréme principal de Bourin, Mhanna
(2017) [4] aux matrices écrites avec un nombre de blocs arbitraire.
© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Bourin and Mhanna recently obtained a novel norm inequality for positive block matrices.

Mi1 M2

Theorem 1.1. [4] Let M =
(4l <M1,2 Mz2

) be a positive matrix with each block square. Then for all symmetric norms

M|l < IM1,1 + M3z + ],

where w is the width of the numerical range of M .

The numerical range (or the field of values [7]) is a convex set on the complex plane. By the width of a numerical range,
we mean the smallest possible w such that the numerical range is contained in a strip of width w. In particular, if the
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numerical range of Mj, is a line segment (this happens, for example, when M, is Hermitian or skew-Hermitian), then
the previous theorem gives (see [8, Theorem 2.6])

IMIl < IM1,1 + M2l (1)

To the author’s best knowledge, Mhanna’s study [8] provides the first example for (1) to be true without the PPT (i.e.
positive partial transpose) condition. We refer to [6,2] for some motivational background.

Bourin and Mhanna’s proof of Theorem 1.1 makes use of a useful decomposition for 2 x 2 positive block matrices [1,
Lemma 3.4]. Their approach seems difficult for an extension to a higher number of blocks, as remarked in their paper [4].
It is the purpose of the present paper to provide such an extension. Before closing this section, we fix some notation. The
set of m x n complex matrices is denoted by M, and we use M, for M, «,. The n x n identity matrix is denoted by I.
The Hermitian part of A € M, is RA := (A + A*)/2. For two Hermitian matrices A, B € My, we write A > B to mean A — B
is positive semidefinite. The numerical range of A is denoted by W (A). If A, B € M, then we write W (A £+ B) to mean
W (A + B) and W (A — B). It is useful to notice that if the width of W (A) is w, then one can find a 6 € [0, ] such that

rl <Ne’A) < (r+ w)l
for some r € R. We refer the reader to Chapter 1 of [7] for basic properties of the numerical range for matrices.

2. Main result

Our extension of Theorem 1.1 to a higher number of blocks is as follows.

Theorem 2.1. Let M = (MLJ')Tj:l be a positive matrix with each block M; j € M. Then for all symmetric norms,

m m—1
IMI <11 Mii+ Y will,
i=1 i=1
where w; (i=1,...,m — 1) is the average of the widths of W (M; j+1 & M j12 £ --- = Mi ;).

Proof. By Fan’s dominance theorem [7, p. 206], it suffices to show that the inequality is true for the Ky Fan norms || - ||k,
k=1,...,n. The proof is by induction. The base case m = 2, i.e. Theorem 1.1 was treated in [4]. We include a proof for
*

2 (x v)
for some X,Y € My;xn so that M1 = X*X, M12=X*Y, Mz =Y"*Y. Clearly, M|y = [|XX* + YY*||x. As the norm of M is
invariant if we replace Y with el?Y, we may assume that rI < R(X*Y) < (r + w)I for some r € R and that w is the width of
W (M1 2). Compute

completeness. The presentation is slightly different from that in [4]. As M is positive, we may write M =

1
IMll = S+ V)X 4 Y)* + (X = )X = V)l
1
= 5 (IX+ DAY T 1= )X = ¥)* )
1
= 5 (I X+ D+ 10X = "X = V)1l

1
< E(||x*x+ Y¥Y 4 20r + )l |l + [ X*X + Y*Y —2rI||k>
= X*X+ Y'Y +wl|k =M1+ M2z + ol .

This completes the proof of the base case. Suppose the asserted inequality is true for m = ¢ for some ¢ > 2. Then we
consider the m = ¢ + 1 case. In this case, M could be written in the form

XiX1 - XiXe XiXet1 X3

M = *: *: *: = :* (Xl X XZ+1)
)&X] te )igxl )igxi+l )ig
XX o Xpg Xe X Xen Xt

for some X, Y € M(¢41)nxn. Again, we assume (by multiplying X¢41 with a rotation unit) that

SI < R(Xy Xeq1) < (s+wp)l (2)

for some s € R.
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