A norm inequality for positive block matrices

Une inégalité de norme pour les matrices positives écrites par blocs

Minghua Lin
Department of Mathematics, Shanghai University, Shanghai, 200444, China

A R T I C L E IN F O

Article history:

Received 2 May 2018
Accepted 15 May 2018
Available online xxxx
Presented by the Editorial Board

A B S TRACT

Any positive matrix $M=\left(M_{i, j}\right)_{i, j=1}^{m}$ with each block $M_{i, j}$ square satisfies the symmetric norm inequality $\|M\| \leq\left\|\sum_{i=1}^{m} M_{i, i}+\sum_{i=1}^{m-1} \omega_{i} I\right\|$, where $\omega_{i}(i=1, \ldots, m-1)$ are quantities involving the width of numerical ranges. This extends the main theorem of Bourin and Mhanna (2017) [4] to a higher number of blocks.
© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Toute matrice positive $M=\left(M_{i, j}\right)_{i, j=1}^{m}$ écrite en blocs carrés $M_{i, j}$ satisfait $\|M\| \leq$ $\left\|\sum_{i=1}^{m} M_{i, i}+\sum_{i=1}^{m-1} \omega_{i} I\right\|$, où les quantités $\omega_{i}, i=1, \ldots, m-1$, font intervenir la largeur du domaine des valeurs numériques. Ceci étend le théorème principal de Bourin, Mhanna (2017) [4] aux matrices écrites avec un nombre de blocs arbitraire.
© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Bourin and Mhanna recently obtained a novel norm inequality for positive block matrices.

Theorem 1.1. [4] Let $M=\left(\begin{array}{ll}M_{1,1} & M_{1,2} \\ M_{1,2} & M_{2,2}\end{array}\right)$ be a positive matrix with each block square. Then for all symmetric norms

$$
\|M\| \leq\left\|M_{1,1}+M_{2,2}+\omega I\right\|
$$

where ω is the width of the numerical range of $M_{1,2}$.

The numerical range (or the field of values [7]) is a convex set on the complex plane. By the width of a numerical range, we mean the smallest possible ω such that the numerical range is contained in a strip of width ω. In particular, if the

[^0]numerical range of $M_{1,2}$ is a line segment (this happens, for example, when $M_{1,2}$ is Hermitian or skew-Hermitian), then the previous theorem gives (see [8, Theorem 2.6])
\[

$$
\begin{equation*}
\|M\| \leq\left\|M_{1,1}+M_{2,2}\right\| \tag{1}
\end{equation*}
$$

\]

To the author's best knowledge, Mhanna's study [8] provides the first example for (1) to be true without the PPT (i.e. positive partial transpose) condition. We refer to [6,2] for some motivational background.

Bourin and Mhanna's proof of Theorem 1.1 makes use of a useful decomposition for 2×2 positive block matrices [1, Lemma 3.4]. Their approach seems difficult for an extension to a higher number of blocks, as remarked in their paper [4]. It is the purpose of the present paper to provide such an extension. Before closing this section, we fix some notation. The set of $m \times n$ complex matrices is denoted by $\mathbb{M}_{m \times n}$ and we use \mathbb{M}_{n} for $\mathbb{M}_{n \times n}$. The $n \times n$ identity matrix is denoted by I.
 is positive semidefinite. The numerical range of A is denoted by $W(A)$. If $A, B \in \mathbb{M}_{n}$, then we write $W(A \pm B)$ to mean $W(A+B)$ and $W(A-B)$. It is useful to notice that if the width of $W(A)$ is ω, then one can find a $\theta \in[0, \pi]$ such that

$$
r I \leq \Re\left(\mathrm{e}^{\mathrm{i} \theta} A\right) \leq(r+\omega) I
$$

for some $r \in \mathbb{R}$. We refer the reader to Chapter 1 of [7] for basic properties of the numerical range for matrices.

2. Main result

Our extension of Theorem 1.1 to a higher number of blocks is as follows.
Theorem 2.1. Let $M=\left(M_{i, j}\right)_{i, j=1}^{m}$ be a positive matrix with each block $M_{i, j} \in \mathbb{M}_{n}$. Then for all symmetric norms,

$$
\|M\| \leq\left\|\sum_{i=1}^{m} M_{i, i}+\sum_{i=1}^{m-1} \omega_{i} I\right\|
$$

where $\omega_{i}(i=1, \ldots, m-1)$ is the average of the widths of $W\left(M_{i, i+1} \pm M_{i, i+2} \pm \cdots \pm M_{i, m}\right)$.
Proof. By Fan's dominance theorem [7, p. 206], it suffices to show that the inequality is true for the Ky Fan norms $\|\cdot\|_{k}$, $k=1, \ldots, n$. The proof is by induction. The base case $m=2$, i.e. Theorem 1.1 was treated in [4]. We include a proof for completeness. The presentation is slightly different from that in [4]. As M is positive, we may write $M=\binom{X^{*}}{Y^{*}}\left(\begin{array}{ll}X & Y\end{array}\right)$ for some $X, Y \in \mathbb{M}_{2 n \times n}$ so that $M_{1,1}=X^{*} X, M_{1,2}=X^{*} Y, M_{2,2}=Y^{*} Y$. Clearly, $\|M\|_{k}=\left\|X X^{*}+Y Y^{*}\right\|_{k}$. As the norm of M is invariant if we replace Y with $\mathrm{e}^{\mathrm{i} \theta} Y$, we may assume that $r I \leq \mathfrak{R}\left(X^{*} Y\right) \leq(r+\omega) I$ for some $r \in \mathbb{R}$ and that ω is the width of $W\left(M_{1,2}\right)$. Compute

$$
\begin{aligned}
\|M\|_{k} & =\frac{1}{2}\left\|(X+Y)(X+Y)^{*}+(X-Y)(X-Y)^{*}\right\|_{k} \\
& \leq \frac{1}{2}\left(\left\|(X+Y)(X+Y)^{*}\right\|_{k}+\left\|(X-Y)(X-Y)^{*}\right\|_{k}\right) \\
& =\frac{1}{2}\left(\left\|(X+Y)^{*}(X+Y)\right\|_{k}+\left\|(X-Y)^{*}(X-Y)\right\|_{k}\right) \\
& \leq \frac{1}{2}\left(\left\|X^{*} X+Y^{*} Y+2(r+\omega) I\right\|_{k}+\left\|X^{*} X+Y^{*} Y-2 r I\right\|_{k}\right) \\
& =\left\|X^{*} X+Y^{*} Y+\omega I\right\|_{k}=\left\|M_{1,1}+M_{2,2}+\omega I\right\|_{k}
\end{aligned}
$$

This completes the proof of the base case. Suppose the asserted inequality is true for $m=\ell$ for some $\ell>2$. Then we consider the $m=\ell+1$ case. In this case, M could be written in the form

$$
M=\left(\begin{array}{cccc}
X_{1}^{*} X_{1} & \cdots & X_{1}^{*} X_{\ell} & X_{1}^{*} X_{\ell+1} \\
\vdots & & \vdots & \vdots \\
X_{\star}^{*} X_{1} & \cdots & X_{*}^{*} X_{\ell} & X_{\ell}^{*} X_{\ell+1} \\
X_{\ell+1}^{*} X_{1} & \cdots & X_{\ell+1}^{*} X_{\ell} & X_{\ell+1}^{*} X_{\ell+1}
\end{array}\right)=\left(\begin{array}{c}
X_{1}^{*} \\
\vdots \\
X_{*}^{*} \\
X_{\ell+1}^{*}
\end{array}\right)\left(\begin{array}{llll}
X_{1} & \cdots & X_{\ell} & X_{\ell+1}
\end{array}\right)
$$

for some $X, Y \in \mathbb{M}_{(\ell+1) n \times n}$. Again, we assume (by multiplying $X_{\ell+1}$ with a rotation unit) that

$$
\begin{equation*}
s I \leq \Re\left(X_{\ell}^{*} X_{\ell+1}\right) \leq\left(s+\omega_{\ell}\right) I \tag{2}
\end{equation*}
$$

for some $s \in \mathbb{R}$.

https://daneshyari.com/en/article/8905305

Download Persian Version:

https://daneshyari.com/article/8905305

Daneshyari.com

[^0]: E-mail address: m_lin@i.shu.edu.cn.
 https://doi.org/10.1016/j.crma.2018.05.006
 1631-073X/© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

