ARTICLE IN PRESS

C. R. Acad. Sci. Paris, Ser. I ••• (••••) •••-•••

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

CRASS1:6123

www.sciencedirect.com

Functional analysis

A norm inequality for positive block matrices

Une inégalité de norme pour les matrices positives écrites par blocs

Minghua Lin

Department of Mathematics, Shanghai University, Shanghai, 200444, China

А	R	Т	I	С	L	Ε	Ι	Ν	F	0	

Article history: Received 2 May 2018 Accepted 15 May 2018 Available online xxxx

Presented by the Editorial Board

ABSTRACT

Any positive matrix $M = (M_{i,j})_{i,j=1}^m$ with each block $M_{i,j}$ square satisfies the symmetric norm inequality $||M|| \le ||\sum_{i=1}^m M_{i,i} + \sum_{i=1}^{m-1} \omega_i I||$, where ω_i (i = 1, ..., m-1) are quantities involving the width of numerical ranges. This extends the main theorem of Bourin and Mhanna (2017) [4] to a higher number of blocks.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Toute matrice positive $M = (M_{i,j})_{i,j=1}^m$ écrite en blocs carrés $M_{i,j}$ satisfait $||M|| \le ||\sum_{i=1}^m M_{i,i} + \sum_{i=1}^{m-1} \omega_i I||$, où les quantités ω_i , $i = 1, \ldots, m-1$, font intervenir la largeur du domaine des valeurs numériques. Ceci étend le théorème principal de Bourin, Mhanna (2017) [4] aux matrices écrites avec un nombre de blocs arbitraire.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Bourin and Mhanna recently obtained a novel norm inequality for positive block matrices.

Theorem 1.1. [4] Let $M = \begin{pmatrix} M_{1,1} & M_{1,2} \\ M_{1,2} & M_{2,2} \end{pmatrix}$ be a positive matrix with each block square. Then for all symmetric norms

 $||M|| \le ||M_{1,1} + M_{2,2} + \omega I||,$

where ω is the width of the numerical range of $M_{1,2}$.

The numerical range (or the field of values [7]) is a convex set on the complex plane. By the width of a numerical range, we mean the smallest possible ω such that the numerical range is contained in a strip of width ω . In particular, if the

E-mail address: m_lin@i.shu.edu.cn.

https://doi.org/10.1016/j.crma.2018.05.006

¹⁶³¹⁻⁰⁷³X/© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Please cite this article in press as: M. Lin, A norm inequality for positive block matrices, C. R. Acad. Sci. Paris, Ser. I (2018), https://doi.org/10.1016/j.crma.2018.05.006

2

ARTICLE IN PRESS

M. Lin / C. R. Acad. Sci. Paris, Ser. I ••• (••••) •••-•••

numerical range of $M_{1,2}$ is a line segment (this happens, for example, when $M_{1,2}$ is Hermitian or skew-Hermitian), then the previous theorem gives (see [8, Theorem 2.6])

$$\|M\| \le \|M_{1,1} + M_{2,2}\|. \tag{1}$$

To the author's best knowledge, Mhanna's study [8] provides the first example for (1) to be true without the PPT (i.e. positive partial transpose) condition. We refer to [6,2] for some motivational background.

Bourin and Mhanna's proof of Theorem 1.1 makes use of a useful decomposition for 2×2 positive block matrices [1, Lemma 3.4]. Their approach seems difficult for an extension to a higher number of blocks, as remarked in their paper [4]. It is the purpose of the present paper to provide such an extension. Before closing this section, we fix some notation. The set of $m \times n$ complex matrices is denoted by $\mathbb{M}_{m \times n}$ and we use \mathbb{M}_n for $\mathbb{M}_{n \times n}$. The $n \times n$ identity matrix is denoted by I. The Hermitian part of $A \in \mathbb{M}_n$ is $\Re A := (A + A^*)/2$. For two Hermitian matrices $A, B \in \mathbb{M}_n$, we write $A \ge B$ to mean A - B is positive semidefinite. The numerical range of A is denoted by W(A). If $A, B \in \mathbb{M}_n$, then we write $W(A \pm B)$ to mean W(A + B) and W(A - B). It is useful to notice that if the width of W(A) is ω , then one can find a $\theta \in [0, \pi]$ such that

$$rI \leq \Re(e^{i\theta}A) \leq (r+\omega)I$$

for some $r \in \mathbb{R}$. We refer the reader to Chapter 1 of [7] for basic properties of the numerical range for matrices.

2. Main result

Our extension of Theorem 1.1 to a higher number of blocks is as follows.

Theorem 2.1. Let $M = (M_{i,j})_{i,j=1}^n$ be a positive matrix with each block $M_{i,j} \in \mathbb{M}_n$. Then for all symmetric norms,

$$||M|| \le ||\sum_{i=1}^{m} M_{i,i} + \sum_{i=1}^{m-1} \omega_i I||,$$

where ω_i (i = 1, ..., m - 1) is the average of the widths of $W(M_{i,i+1} \pm M_{i,i+2} \pm \cdots \pm M_{i,m})$.

Proof. By Fan's dominance theorem [7, p. 206], it suffices to show that the inequality is true for the Ky Fan norms $\|\cdot\|_k$, k = 1, ..., n. The proof is by induction. The base case m = 2, i.e. Theorem 1.1 was treated in [4]. We include a proof for completeness. The presentation is slightly different from that in [4]. As M is positive, we may write $M = \begin{pmatrix} X^* \\ Y^* \end{pmatrix} \begin{pmatrix} X & Y \end{pmatrix}$ for some $X, Y \in \mathbb{M}_{2n \times n}$ so that $M_{1,1} = X^*X, M_{1,2} = X^*Y, M_{2,2} = Y^*Y$. Clearly, $\|M\|_k = \|XX^* + YY^*\|_k$. As the norm of M is invariant if we replace Y with $e^{i\theta}Y$, we may assume that $rI \leq \Re(X^*Y) \leq (r + \omega)I$ for some $r \in \mathbb{R}$ and that ω is the width of $W(M_{1,2})$. Compute

$$\begin{split} \|M\|_{k} &= \frac{1}{2} \|(X+Y)(X+Y)^{*} + (X-Y)(X-Y)^{*}\|_{k} \\ &\leq \frac{1}{2} \Big(\|(X+Y)(X+Y)^{*}\|_{k} + \|(X-Y)(X-Y)^{*}\|_{k} \Big) \\ &= \frac{1}{2} \Big(\|(X+Y)^{*}(X+Y)\|_{k} + \|(X-Y)^{*}(X-Y)\|_{k} \Big) \\ &\leq \frac{1}{2} \Big(\|X^{*}X+Y^{*}Y+2(r+\omega)I\|_{k} + \|X^{*}X+Y^{*}Y-2rI\|_{k} \Big) \\ &= \|X^{*}X+Y^{*}Y+\omega I\|_{k} = \|M_{1,1}+M_{2,2}+\omega I\|_{k}. \end{split}$$

This completes the proof of the base case. Suppose the asserted inequality is true for $m = \ell$ for some $\ell > 2$. Then we consider the $m = \ell + 1$ case. In this case, *M* could be written in the form

$$M = \begin{pmatrix} X_1^* X_1 & \cdots & X_1^* X_{\ell} & X_1^* X_{\ell+1} \\ \vdots & \vdots & \vdots \\ X_{\ell}^* X_1 & \cdots & X_{\ell}^* X_{\ell} & X_{\ell}^* X_{\ell+1} \\ X_{\ell+1}^* X_1 & \cdots & X_{\ell+1}^* X_{\ell} & X_{\ell+1}^* X_{\ell+1} \end{pmatrix} = \begin{pmatrix} X_1^* \\ \vdots \\ X_{\ell}^* \\ X_{\ell+1}^* \end{pmatrix} (X_1 & \cdots & X_{\ell} & X_{\ell+1})$$

for some $X, Y \in \mathbb{M}_{(\ell+1)n \times n}$. Again, we assume (by multiplying $X_{\ell+1}$ with a rotation unit) that

$$sI < \Re(X_{\ell}^*X_{\ell+1}) < (s + \omega_{\ell})I$$

for some $s \in \mathbb{R}$.

Please cite this article in press as: M. Lin, A norm inequality for positive block matrices, C. R. Acad. Sci. Paris, Ser. I (2018), https://doi.org/10.1016/j.crma.2018.05.006

(2)

Download English Version:

https://daneshyari.com/en/article/8905305

Download Persian Version:

https://daneshyari.com/article/8905305

Daneshyari.com