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We are interested in the problem of retrieving information on the refractive index n of a 
penetrable inclusion embedded in a reference medium from farfield data associated with 
incident plane waves. Our approach relies on the use of transmission eigenvalues (TEs) 
that carry information on n and that can be determined from the knowledge of the farfield 
operator F . In this note, we explain how to modify F into a farfield operator F art = F − F̃ , 
where F̃ is computed numerically, corresponding to well-chosen artificial background and 
for which the associated TEs provide more accessible information on n.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Nous souhaitons retrouver l’indice n d’une inclusion pénétrable dans un milieu de référence 
connu à partir de la donnée de champs lointains associés à des ondes planes incidentes. 
Pour ce faire, nous utilisons les valeurs propres de transmission (VPT) qui dépendent de 
n et qui peuvent être déterminées à partir de l’opérateur de champ lointain F . Dans cette 
note, nous expliquons comment modifier F en un opérateur de champ lointain F art = F − F̃ , 
où F̃ est calculé numériquement, correspondant à un milieu de référence artificiel et pour 
lequel les VPT associées fournissent une information plus directe sur n.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In recent years, sampling methods offered different perspectives in solving time harmonic inverse scattering problems [6]. 
In addition to allow for a non-iterative scheme to retrieve the support of inhomogeneities from multistatic data, these 
methods revealed the possibility to construct from the data a spectrum related to the material properties. This spectrum 
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corresponds to the set of Transmission Eigenvalues (TEs) of the so-called Interior Transmission Problem (ITP) (see (4)). In the 
justification of sampling methods, substantial efforts have been made to prove discreteness of the set of TEs [7], because 
most of these methods fail at frequencies corresponding to these values. However, since the work in [5], exploiting the 
failure of the reconstruction methods at TEs, it was proved that they can be determined from measured data and therefore 
can be exploited to infer information on the material properties. The determination of TEs from measured data has been 
improved using the framework of the Generalized Linear Sampling Method (GLSM) where exact knowledge of the support 
is no longer needed [2,6]. See also [14] for a different approach.

Under certain assumptions on n, the refractive index of the considered inhomogeneity appearing in Problem (1) below, it 
has been proved that there exist an infinite number of real positive TEs (k2 > 0) [8]. Note that in practice only real positive 
TEs are of interest because one can only play with real wavenumbers for measurements. This result of existence of real 
positive TEs is not obvious because the ITP (see equation after (4) below) is quadratic in k2 and it does not seem possible 
to see the spectrum of (4) as the spectrum of a self-adjoint operator. In particular, in 1D situations, it has been established 
that complex TEs do exist.

Although mathematically interesting, relying on transmission eigenvalues to determine quantitative features on n is diffi-
cult. The reason is twofold. First, information is lost in complex eigenvalues which cannot be measured in practice. Second it 
is difficult to establish sharp estimates for real TEs with respect to n due to the complexity of the problem. In this note, we 
explain how to work with another farfield operator F art corresponding to an artificial background (reference medium) for 
which the associated TEs have a more direct connection with n. Put differently, working with F art , our goal is to simplify the 
solution to the inverse spectral problem consisting in determining n from the knowledge of real positive TEs. Important in 
the analysis is the fact that F art is given by the formula F art = F − F̃ where F̃ can be obtained via a rather direct numerical 
computation. Therefore, in practice F art can also be considered as a data. Interestingly also, our approach does not require a 
priori knowledge of the exact support of the inhomogeneity. It is sufficient to know that the defect in the reference medium 
is located in a given bounded region.

Close to our study are the papers [11,9,3]. In the first one, the authors reformulate the ITP as an eigenvalue problem for 
the material coefficient. In the second and third ones, it is explained how to identify n from the knowledge of F (k) − F̃ (k, γ )

at a single wavenumber k and for a range of γ . Here F (k) − F̃ (k, γ ) can be seen as the farfield operator corresponding to 
a background depending on an artificial parameter γ . In comparison with our approach, this method is interesting because 
it requires to know F at a single wavenumber ( F̃ (k, γ ) can be computed numerically). However, the relation between 
associated TEs and n is a bit more complex than in our case.

2. Setting

We assume that the propagation of waves in time harmonic regime in the reference medium Rd , d = 2, 3, is governed 
by the Helmholtz equation �u + k2u = 0, with k > 0 being the wavenumber. The localized perturbation in the reference 
medium is modeled by some bounded open set � ⊂ R

d with Lipschitz boundary ∂� and a refractive index n ∈ L∞(Rd). We 
assume that n is real valued, that n = 1 in Rd \ � and that ess inf� n is positive. The scattering of the incident plane wave 
ui(·, θ i) := eikθ i ·x of direction of propagation θ i ∈ S

d−1 by � is described by the problem

find u = ui + us such that

�u + k2n u = 0 in R
d,

lim
r→+∞ r

d−1
2

(
∂us

∂r
− ikus

)
= 0,

(1)

with ui = ui(·, θ i). The last line of (1), where r = |x|, is the Sommerfeld radiation condition and is assumed to hold uniformly 
with respect to θ s = x/r. For all k > 0, Problem (1) has a unique solution u ∈ H2

loc(R
d). The scattered field us(·, θ i) has the 

expansion

us(x, θ i) = eikrr− d−1
2

(
u∞

s (θ s, θ i) + O (1/r)
)
, (2)

as r → +∞, uniformly in θ s ∈ S
d−1. The function u∞

s (·, θ i) : Sd−1 →C is called the farfield pattern associated with ui(·, θ i). 
From the farfield pattern, we can define the farfield operator F : L2(Sd−1) → L2(Sd−1) such that

(F g)(θ s) =
∫

Sd−1

g(θ i) u∞
s (θ s, θ i)ds(θ i). (3)

The function F g corresponds to the farfield pattern for the scattered field in (1) with ui = ui(g) := ∫
Sd−1 g(θ i)eikθ i ·x ds(θ i)

(Herglotz wave function). Define the operator H : L2(Sd−1) → L2(�) such that Hg = ui(g)|� and the space Hinc(�) := {v ∈
L2(�); �v + k2 v = 0 in �}. It is known that Hinc(�) is nothing but the closure of the range of the operator H in L2(�). 
Observing that �us + k2nus = k2(1 − n)ui(g) (in particular us depends only on the values of ui(g)|�), we can factorize F
as F = GH where the operator G : Hinc(�) → L2(Sd−1) is the extension by continuity of the mapping ui(g)|� �→ u∞

s . The 
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