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In this article, we prove several different improved versions of the classical Bohr’s 
inequality. All the results are proved to be sharp.
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r é s u m é

Nous montrons ici plusieurs améliorations de l’inégalité de Bohr classique. Nous montrons 
également que les constantes numériques dans nos résultats sont optimales.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main results

The classical theorem of Bohr [3] (after subsequent improvements due to M. Riesz, I. Schur and F. Wiener) states that 
if f is a bounded analytic function on the unit disk D := {z ∈ C : |z| < 1}, with the Taylor expansion 

∑∞
k=0 akzk , and 

‖ f ‖∞ := supz∈D | f (z)| < ∞, then

M f (r) :=
∞∑

n=0

|an|rn ≤ ‖ f ‖∞ for 0 ≤ r ≤ 1/3 (1)

and the constant 1/3 is sharp. There are a number of articles that deal with Bohr’s phenomenon. See, for example, [2,10], 
the recent survey on this topic by Abu-Muhanna et al. [1] and the references therein. Bombieri [4] considered the function 
m(r) defined by m(r) = sup

{
M f (r)/‖ f ‖∞

}
, where the supremum is taken over all nonzero bounded analytic functions, and 

proved that

m(r) = 3 − √
8(1 − r2)

r
for 1/3 ≤ r ≤ 1/

√
2.
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Later Bombieri and Bourgain [5] studied the behaviour of m(r) as r → 1 (see also [6]) and proved the following result, 
which validated a question raised in [11, Remark 1] in the affirmative.

Theorem A. ([5, Theorem 1]) If r > 1/
√

2, then m(r) < 1/
√

1 − r2 . With α = 1/
√

2, the function ϕα(z) = (α − z)/(1 − α z) is 
extremal, giving m(1/

√
2) = √

2.

A lower estimate for m(r) as r → 1 is also obtained in [5, Theorem 2]. We are now ready to state several different 
improved versions of the classical Bohr inequality (1).

Theorem 1. Suppose that f (z) = ∑∞
k=0 akzk is analytic in D, | f (z)| ≤ 1 in D, and Sr denotes the area of the Riemann surface of the 

function f −1 defined on the image of the subdisk |z| < r under the mapping f . Then

B1(r) :=
∞∑

k=0

|ak|rk + 16

9

(
Sr

π

)
≤ 1 for r ≤ 1

3
(2)

and the numbers 1/3 and 16/9 cannot be improved. Moreover,

B2(r) := |a0|2 +
∞∑

k=1

|ak|rk + 9

8

(
Sr

π

)
≤ 1 for r ≤ 1

2
(3)

and the constants 1/2 and 9/8 cannot be improved.

Remark 1. Let us remark that if f is a univalent function then Sr is the area of the image of the subdisk |z| < r under the 
mapping f . In the case of multivalent function, Sr is greater than the area of the image of the subdisk |z| < r. This fact 
could be shown by noting that

Sr =
∫

f (Dr)

| f ′(z)|2 dA(w) =
∫

f (Dr)

ν f (w)dA(w) ≥
∫

f (Dr)

dA(w) = Area( f (Dr)),

where Dr = {z ∈C : |z| < r} and ν f (w) = ∑
f (z)=w 1 denotes the counting function of f .

Theorem 2. Suppose that f (z) = ∑∞
k=0 akzk is analytic in D and | f (z)| ≤ 1 in D. Then

|a0| +
∞∑

k=1

(
|ak| + 1

2
|ak|2

)
rk ≤ 1 for r ≤ 1

3
(4)

and the numbers 1/3 and 1/2 cannot be improved.

Theorem 3. Suppose that f (z) = ∑∞
k=0 akzk is analytic in D and | f (z)| ≤ 1 in D. Then

∞∑
k=0

|ak|rk + | f (z) − a0|2 ≤ 1 for r ≤ 1

3

and the number 1/3 cannot be improved.

Finally, we also prove the following sharp inequality.

Theorem 4. Suppose that f (z) = ∑∞
k=0 akzk is analytic in D and | f (z)| ≤ 1 in D. Then

| f (z)|2 +
∞∑

k=1

|ak|2r2k ≤ 1 for r ≤
√

11

27
= 0.63828 . . .

and this number cannot be improved.
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