

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

A characterization of b_e -critical trees

Une caractérisation des arbres b_e-critiques

Amel Bendali-Braham^a, Noureddine Ikhlef-Eschouf^b, Mostafa Blidia^c

^a Laboratory of Mechanics, Physics and Mathematical Modeling, Faculty of Sciences, University of Médéa, Algeria

^b Department of Mathematics and Computer Science, Faculty of Sciences, University of Médéa, Algeria

^c Laboratory LAMDA-RO, Department of Mathematics, University of Blida 1, B.P. 270, Blida, Algeria

ARTICLE INFO

Article history: Received 20 November 2016 Accepted after revision 15 January 2018

Presented by Vladimir Nikiforov

ABSTRACT

The *b*-chromatic number of a graph *G* is the largest integer *k* such that *G* admits a proper coloring with *k* colors for which each color class contains a vertex that has at least one neighbor in all the other k - 1 color classes. A graph *G* is called *b_e*-*critical* if the contraction of any edge *e* of *G* decreases the *b*-chromatic number of *G*. The purpose of this paper is the characterization of all *b_e*-*critical* trees.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Le nombre *b*-chromatique d'un graphe *G* est le plus grand entier *k* tel que *G* admette une coloration propre avec *k* couleurs, pour laquelle toute classe de couleur contient un sommet qui a au moins un voisin dans toutes les autres k - 1 classes de couleur. Un graphe *G* est appelé b_e -critique si la contraction de toute arête *e* de *G* fait diminuer le nombre *b*-chromatique de *G*. Le but de cet article est la caractérisation de tous les arbres b_e -critiques.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

All graphs in this paper are finite and simple. For the terminology and the notations not defined here we refer to [2]. Let G = (V(G), E(G)) be a graph. For a non-empty set $A \subseteq V(G)$, we denote by G[A] the subgraph of G induced by A, and by $G \setminus A$ the subgraph induced by $V(G) \setminus A$. If $A = \{v\}$ we may write $G \setminus v$ instead of $G \setminus \{v\}$. For a vertex v of G, the open neighborhood of v is $N_G(v) = \{u \in V(G) : uv \in E(G)\}$ and the degree of v, denoted by $d_G(v)$, is $|N_G(v)|$. By $\Delta(G)$ and $d_G(u, v)$, we denote the maximum degree of the graph G and the distance between u and v in G, respectively. A tree is a connected graph without induced cycle. A rooted tree is a tree with a special vertex, called the root of the tree. A vertex of degree one is called a *leaf*, and its neighbor is called a *support* vertex. An edge incident with a leaf is called a *pendant edge*.

https://doi.org/10.1016/j.crma.2018.01.006

E-mail addresses: bendali-braham@hotmail.fr (A. Bendali-Braham), nour_echouf@yahoo.fr (N. Ikhlef-Eschouf), m_blidia@yahoo.fr (M. Blidia).

¹⁶³¹⁻⁰⁷³X/© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

A tree *T* is a *double star* $S_{p,q}$ ($p \ge q \ge 1$) if it contains exactly two vertices *x*, *y* (called central vertices) that are not leaves such that $d_T(x) = p + 1$ and $d_T(y) = q + 1$. We let P_n and $K_{1,n-1}$ denote the *path* and *star* on *n* vertices, respectively.

A proper coloring of *G* is an assignment of colors (represented by natural numbers) to the vertices of *G* such that any two adjacent vertices have different colors. The minimum number $\chi(G)$ for which there exists a proper coloring (with $\chi(G)$ colors) is called the *chromatic number* of a graph *G*. A *b*-coloring of a graph by *k* colors is a proper coloring with the property that each color class contains a vertex that has at least one neighbor in all the other k - 1 color classes. We call any such vertex a *b*-vertex. The *b*-chromatic number b(G) of a graph *G* is the largest number *k* such that *G* has a *b*-coloring with *k* colors. This parameter has been defined by Irving and Manlove [7,10]. It is obvious that $\chi(G) \le b(G) \le \Delta(G) + 1$. For arbitrary graphs, the problem of determining b(G) is NP-complete [7,10], even when restricted to bipartite graphs [9]. For the special case of trees, Irving and Manlove [7,10] presented a linear time algorithm. A recent survey on the *b*-coloring in graphs can be found in [8].

It was observed in [7,10] that if a graph *G* admits a *b*-coloring with ℓ colors, *G* must have at least ℓ vertices with degree at least $\ell - 1$. The *m*-degree of a graph *G*, denoted *m*(*G*), is the largest integer ℓ such that *G* has ℓ vertices of degree at least $\ell - 1$. Clearly, $m(G) \le \Delta(G) + 1$. Irving and Manlove [7,10] show that this parameter bounds the *b*-chromatic number. So, every graph satisfies $b(G) \le m(G)$. A vertex of *G* with degree at least m(G) - 1 is called a *dense vertex*. A *pivoted tree* is a tree *T* in which one vertex *v* of degree less than m(G) - 1 is distinguished and called the *pivot*.

Definition 1. [7,10] A tree *T* is pivoted if *T* has exactly m(T) dense vertices and *T* contains a vertex *v* such that *v* is not dense and every dense vertex is adjacent either to *v* or to a neighbor of *v* of degree m(T) - 1.

The following observation is straightforward.

Observation 2. Every non-dense vertex of a pivoted tree T, except the pivot, may be adjacent to at most one dense vertex of T.

D.F. Manlove and R.W. Iring [7,10] have proved that, for trees, the *b*-chromatic number can be computed as follows.

Theorem 3. [7] If *T* is a pivoted tree, then b(T) = m(T) - 1; else, b(T) = m(T).

The concept of critical graphs with respect to the *b*-chromatic number has received more attention in recent years. The graphs for which the *b*-chromatic number decreases on the deletion of any edge were first studied in [4,6]. Further, a characterization of all such graphs is given in [1]. On the other hand, the authors of [3] characterized the trees whose *b*-chromatic number decreases when any vertex is removed. The graphs for which the *b*-chromatic number increases upon the removal of any edge (or vertex) were explored in [5].

In this paper, we study those graphs where the *b*-chromatic number decreases on the contraction of any edge. Before stating our results, we need some definitions and notation. For a given graph *G*, the *contraction* of an edge e = uv means removing *u* and *v* from the vertex-set *V*(*G*) and replacing it by a new vertex *z* and attaching *z* to all vertices that are adjacent to *u* or *v* in *G*. We denote by *G*_e the graph obtained from *G* by contracting the edge *e*.

Definition 4. A graph is called *b_e*-critical if the *b*-chromatic number decreases upon the contraction of any edge.

More precisely, we say that a graph G is b_e -critical if $b(G_e) < b(G)$ holds for every edge e in G. The aim of the paper is to characterize all b_e -critical trees.

2. Preliminary results

This section presents some results that will be useful in the characterization of b_e -critical trees.

Observation 5. Let e be an edge of a b_e -critical tree T and let T_e be the tree obtained from T by contracting e. Then,

(i) $m(T_e) \le m(T)$, with equality if e is a non-pendant edge such that one of its endpoints is a non-dense vertex. (ii) If T_e is not a pivoted tree, then $m(T_e) \le m(T) - 1$.

Proof. (*i*) If the first part is not true, then Theorem 3 yields $b(T_e) \ge m(T_e) - 1 \ge m(T) \ge b(T)$, which is a contradiction. The second part follows immediately because contracting such edge does not decrease the *m*-degree of *T*. (*ii*) Using again Theorem 3, we get $m(T_e) = b(T_e) \le b(T) - 1 = m(T) - 1$. \Box

For the remainder of this paper, we denote by *D* and *L*, respectively, the set of dense vertices and the set of leaves in *T*. Denote also by D_e and L_e , respectively, the set of dense vertices and the set of leaves in T_e .

Download English Version:

https://daneshyari.com/en/article/8905480

Download Persian Version:

https://daneshyari.com/article/8905480

Daneshyari.com