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We study the motion of a visco-elastic solid with large deformations. We prove the 
existence of a local-in-time motion and of a non-negative pressure, which is a measure 
reaction to the incompressibility condition.
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r é s u m é

On étudie le mouvement d’un solide viscoélastique incompressible en grande déformation. 
On démontre l’existence d’un mouvement local en temps et d’une pression positive qui est 
une mesure, réaction à la condition d’incompressibilité.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Nous étudions le mouvement d’un solide viscoélastique incompressible en grande déformation. La condition d’incom-
pressibilité (2) est unilatérale, car en traction des vides peuvent apparaître. Cette condition introduit une pression positive 
(voir (5) et (17)). Par une approximation de Moreau–Yosida de la fonction indicatrice de l’ensemble des matrices d’élonga-
tion qui vérifient la condition d’incompressibilité (2), on démontre l’existence d’un mouvement approché. On montre que 
ce mouvement approché a une limite et que la pression approchée a aussi une limite, qui est une mesure (Theorème 5.1). 
Cette mesure autorise des collisions, c’est-à-dire des discontinuités de vitesse, lors de la disparition de vides.

1. Introduction

We consider the motion between time 0 and time t̃ > 0 of a solid located in a smooth bounded domain Da ⊂ R
3. The 

position function is a ∈ Da, t ∈ (0, ̃t) → �(a, t), with �(a, 0) = a. For the sake of simplicity, we assume that the solid is in 
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contact on a smooth part �a
0 of its boundary with an obstacle schematized by springs applying actions proportional to the 

gap (� − a) and its gradient. Besides the body force 
−→
f , no other external action is applied.

We denote by M the space of 3 × 3 matrices, endowed with the usual scalar product. The subspaces S ⊂ M of the 
symmetric matrices and A ⊂ M of the antisymmetric matrices are orthogonal. We introduce the set

Cα = {B ∈ M
∣∣∣ tr B ≥ 3α, tr(cof B) ≥ 3α2, det B ≥ α3

}
, 0 < α < 1, (1)

where α is the only physical parameter, the value of which we choose different from 1. We recall that for any position �
that is kinematically admissible, i.e. differentiable with det(grad�) > 0, there exists a unique symmetric positive definite 
matrix W, the stretch matrix, and a rotation matrix R with det R = 1, such that grad � = RW. With this decomposition, 
the local impenetrability condition is to require, for the stretch matrix, that W ∈ Cα ∩ S. Note in particular that the physical 
constant α quantifies the resistance of the material to crushing.

This model has been introduced in [1], [3], [6], and in [2] (with more analytical details concerning the existence of 
solutions). We refer the reader to these papers for further details in the derivation of the model and, for some auxiliary 
results, we will exploit in the sequel. Actually, let us point out that the main novelty of this paper consists in the fact that 
incompressibility is required as an unilateral internal constraint (see Sec. 2).

2. The incompressibility condition

The usual incompressibility condition is det W = 1. But let us consider experiments and remark that when tension is 
applied to a sample, some voids may appear during the evolution, mainly at the microscopic level, with a volume increase 
at the macroscopic level. Moreover a phase change may occur and eventually makes possible an increase of volume. This 
behaviour has been described a long time ago by Jean-Jacques Moreau to investigate cavitation in fluid mechanics, [7]. The 
water is incompressible, but bubbles may appear inside water at the microscopic level when pressure is null: this is the 
cavitation phenomenon responsible for water hammers. It results that the unilateral condition

det W ≥ 1 (2)

is possible. On the contrary, for an incompressible material, it is impossible to have interpenetration at the microscopic 
level. It results det W < 1 is impossible. Note that the word incompressible refers to the impossibility to modify the volume 
by compression. We are motivated to think that condition (2) is the condition that accounts for the actual mechanical 
behaviour. The set

K = {B ∈ M | B ∈ S∩ C0, det B ≥ 1} (3)

is convex (C0 is set Cα with α = 0, S ∩ C0 is the set of the semi-definite matrices). We denote by I K the indicator function 
of set K in M. Set K accounts for the two internal constraints: symmetry of stretch matrix and incompressibility.

3. The constitutive laws

We derive the constitutive laws from volume free energy �(W, grad��, ‖gradR‖2), surface free energy ��(� − a,

grad� − I) and volume pseudo-potential of dissipation D(Ẇ, grad�) with � = ṘR
T

and

�(W,grad ��,‖grad R‖2) = 1

2
‖W − I‖2 + 1

2
‖grad ��‖2 + �̂(W) + I K (W) + 1

4
‖grad R‖2 ,

��(� − a,grad � − I) = 1

2

∫
�a

0

(� − a)2d� + 1

2

∫
�a

0

(grad � − I)2d�,

and

D(Ẇ,grad �) = 1

2

∥∥Ẇ
∥∥2 + 1

4
‖grad �‖2 ,

where W is a matrix of M, and ‖W‖2 = W : W, ‖grad��‖2 = �i,αββ�i,αδδ . The function I K (W) is the indicator function of 
convex set K that insures the symmetry of matrix W and incompressibility.

The free energy accounts for the impenetrability condition. In particular, this constraint is related to the presence of 
function �̂(W), which is a smooth approximation from the interior of the indicator function of the set Cα in M (see [1], 
[2], [3] and [6]).

The incompressibility constitutive law is

Sreac + Areac ∈ ∂ I K (W),
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