EI SEVIER Contents lists available at ScienceDirect ## C. R. Acad. Sci. Paris. Ser. I www.sciencedirect.com Number theory # On the denominators of harmonic numbers ** ## Sur les dénominateurs des nombres harmoniques # Bing-Ling Wu, Yong-Gao Chen School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, PR China #### ARTICLE INFO ### Article history: Received 23 October 2017 Accepted after revision 12 January 2018 Presented by the Editorial Board #### ABSTRACT Let H_n be the n-th harmonic number and let v_n be its denominator. It is well known that v_n is even for every integer $n \geq 2$. In this paper, we study the properties of v_n . One of our results is: the set of positive integers n such that v_n is divisible by the least common multiple of $1, 2, \cdots, \lfloor n^{1/4} \rfloor$ has density one. In particular, for any positive integer m, the set of positive integers n such that v_n is divisible by m has density one. © 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. ## RÉSUMÉ Soit H_n le n-ième nombre harmonique et notons v_n son dénominateur. Il est bien connu que v_n est pair pour tout entier $n \ge 2$. Dans ce texte, nous étudions les propriétés de v_n . Un de nos résultats montre que l'ensemble des entiers positifs n tels que v_n soit divisible par le plus petit commun multiple de $1, 2, \ldots, [n^{1/4}]$ est de densité 1. En particulier, pour tout entier positif m, l'ensemble des entiers positifs n tels que v_n soit divisible par m est de densité 1. © 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. ## 1. Introduction For any positive integer n, let $$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = \frac{u_n}{v_n}, \quad (u_n, v_n) = 1, \ v_n > 0.$$ The number H_n is called the n-th harmonic number. In 1991, Eswarathasan and Levine [2] introduced I_p and J_p . For any prime number p, let J_p be the set of positive integers n such that $p \mid u_n$ and let I_p be the set of positive integers n such that $p \nmid v_n$. Here I_p and J_p are slightly different from those in [2]. In [2], Eswarathasan and Levine considered $0 \in I_p$ and $0 \in J_p$. It is clear that $J_p \subseteq I_p$. E-mail addresses: 390712592@qq.com (B.-L. Wu), ygchen@njnu.edu.cn (Y.-G. Chen). ^{*} This work was supported by the National Natural Science Foundation of China (No. 11771211) and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. In 1991, Eswarathasan and Levine [2] conjectured that J_p is finite for any prime number p. In 1994, Boyd [1] confirmed that J_p is finite for $p \le 547$, except 83, 127, 397. For any set S of positive integers, let $S(x) = |S \cap [1, x]|$. In 2016, Sanna [3] proved that $$J_p(x) \le 129 \, p^{\frac{2}{3}} \, x^{0.765}.$$ Recently, Wu and Chen [5] proved that $$J_p(x) \le 3x^{\frac{2}{3} + \frac{1}{25\log p}}. (1.1)$$ For v_n , Shiu [4] proved that, for any primes $2 < p_1 < p_2 < \cdots < p_k$, there exists n such that the least common multiple of $1, 2, \cdots, n$ is divisible by $p_1 \cdots p_k v_n$. For any positive integer m, let I_m be the set of positive integers n such that $m \nmid v_n$. In this paper, the following results are proved. **Theorem 1.1.** The set of positive integers n such that v_n is divisible by the least common multiple of $1, 2, \dots, \lfloor n^{1/4} \rfloor$ has density one. **Theorem 1.2.** For any positive integer m and any positive real number x, we have $$I_m(x) \le 4 m^{\frac{1}{3}} x^{\frac{2}{3} + \frac{1}{25 \log q_m}},$$ where q_m is the least prime factor of m. From Theorem 1.1 or Theorem 1.2, we immediately have the following corollary. **Corollary 1.3.** For any positive integer m, the set of positive integers n such that $m \mid v_n$ has density one. #### 2. Proofs We always use p to denote a prime. Firstly, we give the following two lemmas. **Lemma 2.1.** For any prime p and any positive integer k, we have $$I_{p^k} = \{p^k n_1 + r : n_1 \in J_p \cup \{0\}, \ 0 \le r \le p^k - 1\} \setminus \{0\}.$$ **Proof.** For any integer a, let $\nu_p(a)$ be the p-adic valuation of a. For any rational number $\alpha = \frac{a}{b}$, let $\nu_p(\alpha) = \nu_p(a) - \nu_p(b)$. It is clear that $n \in I_{p^k}$ if and only if $\nu_p(H_n) > -k$. If $n < p^k$, then $\nu_p(H_n) \ge -\nu_p([1, 2, \dots, n]) > -k$. So $n \in I_{p^k}$. In the following, we assume that $n \ge p^k$. Let $$n = p^k n_1 + r$$, $0 \le r \le p^k - 1$, $n_1, r \in \mathbb{Z}$. Then $n_1 \ge 1$. Write $$H_n = \sum_{m=1, p^k \nmid m}^{n} \frac{1}{m} + \frac{1}{p^k} H_{n_1} = \frac{b}{p^{k-1}a} + \frac{u_{n_1}}{p^k v_{n_1}} = \frac{pbv_{n_1} + au_{n_1}}{p^k av_{n_1}},$$ (2.1) where $p \nmid a$ and $(u_{n_1}, v_{n_1}) = 1$. If $n_1 \in J_p$, then $p \mid u_{n_1}$ and $p \nmid v_{n_1}$. Thus $p \mid au_{n_1} + pbv_{n_1}$ and $v_p(p^k av_{n_1}) = k$. By (2.1), $v_p(H_n) > -k$. So $n \in I_{p^k}$. If $n_1 \notin J_p$, then $p \nmid u_{n_1}$. Thus $p \nmid au_{n_1} + pbv_{n_1}$. It follows from (2.1) that $v_p(H_n) \le -k$. So $n \notin I_{p^k}$. Now we have proved that $n \in I_{p^k}$ if and only if $n_1 \in J_p \cup \{0\}$. This completes the proof of Lemma 2.1. \Box **Lemma 2.2.** For any prime power p^k and any positive number x, we have $$I_{p^k}(x) \le 4(p^k)^{\frac{1}{3} - \frac{1}{25\log p}} x^{\frac{2}{3} + \frac{1}{25\log p}}.$$ **Proof.** If $x < p^k$, then $$I_{n^k}(x) \leq x < 4x^{\frac{1}{3} - \frac{1}{25\log p}} x^{\frac{2}{3} + \frac{1}{25\log p}} \leq 4(p^k)^{\frac{1}{3} - \frac{1}{25\log p}} x^{\frac{2}{3} + \frac{1}{25\log p}}.$$ ## Download English Version: # https://daneshyari.com/en/article/8905496 Download Persian Version: https://daneshyari.com/article/8905496 <u>Daneshyari.com</u>