EI SEVIER

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris. Ser. I

www.sciencedirect.com

Number theory

On the denominators of harmonic numbers **

Sur les dénominateurs des nombres harmoniques

Bing-Ling Wu, Yong-Gao Chen

School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, PR China

ARTICLE INFO

Article history: Received 23 October 2017 Accepted after revision 12 January 2018

Presented by the Editorial Board

ABSTRACT

Let H_n be the n-th harmonic number and let v_n be its denominator. It is well known that v_n is even for every integer $n \geq 2$. In this paper, we study the properties of v_n . One of our results is: the set of positive integers n such that v_n is divisible by the least common multiple of $1, 2, \cdots, \lfloor n^{1/4} \rfloor$ has density one. In particular, for any positive integer m, the set of positive integers n such that v_n is divisible by m has density one.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Soit H_n le n-ième nombre harmonique et notons v_n son dénominateur. Il est bien connu que v_n est pair pour tout entier $n \ge 2$. Dans ce texte, nous étudions les propriétés de v_n . Un de nos résultats montre que l'ensemble des entiers positifs n tels que v_n soit divisible par le plus petit commun multiple de $1, 2, \ldots, [n^{1/4}]$ est de densité 1. En particulier, pour tout entier positif m, l'ensemble des entiers positifs n tels que v_n soit divisible par m est de densité 1.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

For any positive integer n, let

$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = \frac{u_n}{v_n}, \quad (u_n, v_n) = 1, \ v_n > 0.$$

The number H_n is called the n-th harmonic number. In 1991, Eswarathasan and Levine [2] introduced I_p and J_p . For any prime number p, let J_p be the set of positive integers n such that $p \mid u_n$ and let I_p be the set of positive integers n such that $p \nmid v_n$. Here I_p and J_p are slightly different from those in [2]. In [2], Eswarathasan and Levine considered $0 \in I_p$ and $0 \in J_p$. It is clear that $J_p \subseteq I_p$.

E-mail addresses: 390712592@qq.com (B.-L. Wu), ygchen@njnu.edu.cn (Y.-G. Chen).

^{*} This work was supported by the National Natural Science Foundation of China (No. 11771211) and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

In 1991, Eswarathasan and Levine [2] conjectured that J_p is finite for any prime number p. In 1994, Boyd [1] confirmed that J_p is finite for $p \le 547$, except 83, 127, 397. For any set S of positive integers, let $S(x) = |S \cap [1, x]|$. In 2016, Sanna [3] proved that

$$J_p(x) \le 129 \, p^{\frac{2}{3}} \, x^{0.765}.$$

Recently, Wu and Chen [5] proved that

$$J_p(x) \le 3x^{\frac{2}{3} + \frac{1}{25\log p}}. (1.1)$$

For v_n , Shiu [4] proved that, for any primes $2 < p_1 < p_2 < \cdots < p_k$, there exists n such that the least common multiple of $1, 2, \cdots, n$ is divisible by $p_1 \cdots p_k v_n$.

For any positive integer m, let I_m be the set of positive integers n such that $m \nmid v_n$. In this paper, the following results are proved.

Theorem 1.1. The set of positive integers n such that v_n is divisible by the least common multiple of $1, 2, \dots, \lfloor n^{1/4} \rfloor$ has density one.

Theorem 1.2. For any positive integer m and any positive real number x, we have

$$I_m(x) \le 4 m^{\frac{1}{3}} x^{\frac{2}{3} + \frac{1}{25 \log q_m}},$$

where q_m is the least prime factor of m.

From Theorem 1.1 or Theorem 1.2, we immediately have the following corollary.

Corollary 1.3. For any positive integer m, the set of positive integers n such that $m \mid v_n$ has density one.

2. Proofs

We always use p to denote a prime. Firstly, we give the following two lemmas.

Lemma 2.1. For any prime p and any positive integer k, we have

$$I_{p^k} = \{p^k n_1 + r : n_1 \in J_p \cup \{0\}, \ 0 \le r \le p^k - 1\} \setminus \{0\}.$$

Proof. For any integer a, let $\nu_p(a)$ be the p-adic valuation of a. For any rational number $\alpha = \frac{a}{b}$, let $\nu_p(\alpha) = \nu_p(a) - \nu_p(b)$. It is clear that $n \in I_{p^k}$ if and only if $\nu_p(H_n) > -k$.

If $n < p^k$, then $\nu_p(H_n) \ge -\nu_p([1, 2, \dots, n]) > -k$. So $n \in I_{p^k}$. In the following, we assume that $n \ge p^k$. Let

$$n = p^k n_1 + r$$
, $0 \le r \le p^k - 1$, $n_1, r \in \mathbb{Z}$.

Then $n_1 \ge 1$. Write

$$H_n = \sum_{m=1, p^k \nmid m}^{n} \frac{1}{m} + \frac{1}{p^k} H_{n_1} = \frac{b}{p^{k-1}a} + \frac{u_{n_1}}{p^k v_{n_1}} = \frac{pbv_{n_1} + au_{n_1}}{p^k av_{n_1}},$$
(2.1)

where $p \nmid a$ and $(u_{n_1}, v_{n_1}) = 1$.

If $n_1 \in J_p$, then $p \mid u_{n_1}$ and $p \nmid v_{n_1}$. Thus $p \mid au_{n_1} + pbv_{n_1}$ and $v_p(p^k av_{n_1}) = k$. By (2.1), $v_p(H_n) > -k$. So $n \in I_{p^k}$. If $n_1 \notin J_p$, then $p \nmid u_{n_1}$. Thus $p \nmid au_{n_1} + pbv_{n_1}$. It follows from (2.1) that $v_p(H_n) \le -k$. So $n \notin I_{p^k}$.

Now we have proved that $n \in I_{p^k}$ if and only if $n_1 \in J_p \cup \{0\}$.

This completes the proof of Lemma 2.1. \Box

Lemma 2.2. For any prime power p^k and any positive number x, we have

$$I_{p^k}(x) \le 4(p^k)^{\frac{1}{3} - \frac{1}{25\log p}} x^{\frac{2}{3} + \frac{1}{25\log p}}.$$

Proof. If $x < p^k$, then

$$I_{n^k}(x) \leq x < 4x^{\frac{1}{3} - \frac{1}{25\log p}} x^{\frac{2}{3} + \frac{1}{25\log p}} \leq 4(p^k)^{\frac{1}{3} - \frac{1}{25\log p}} x^{\frac{2}{3} + \frac{1}{25\log p}}.$$

Download English Version:

https://daneshyari.com/en/article/8905496

Download Persian Version:

https://daneshyari.com/article/8905496

<u>Daneshyari.com</u>