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RESUME

Soit H, le n-iéme nombre harmonique et notons v, son dénominateur. Il est bien connu
que v, est pair pour tout entier n > 2. Dans ce texte, nous étudions les propriétés de vy.
Un de nos résultats montre que I'ensemble des entiers positifs n tels que v, soit divisible
par le plus petit commun multiple de 1,2,...,[n'/4] est de densité 1. En particulier, pour
tout entier positif m, 'ensemble des entiers positifs n tels que v, soit divisible par m est
de densité 1.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

For any positive integer n, let

1 1 1 uy
Hy=14+-4+-+---4+-=—, Up,vp)=1 vp>0.
2 3 n vp
The number H, is called the n-th harmonic number. In 1991, Eswarathasan and Levine [2] introduced I, and J,. For any
prime number p, let J, be the set of positive integers n such that p | u, and let I, be the set of positive integers n such
that p {v,. Here I, and J, are slightly different from those in [2]. In [2], Eswarathasan and Levine considered 0 € I;, and

0 e Jp. Itis clear that J, CIp.
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In 1991, Eswarathasan and Levine [2] conjectured that ], is finite for any prime number p. In 1994, Boyd [1] confirmed
that J, is finite for p <547, except 83,127,397. For any set S of positive integers, let S(x) =[S N[1,x]|. In 2016, Sanna [3]
proved that

Jp(x) <129p3 x0765,
Recently, Wu and Chen [5] proved that

2 1
Jp(x) <3x3 7 STwp, (11)

For vy, Shiu [4] proved that, for any primes 2 < p; < p2 < --- < py, there exists n such that the least common multiple of
1,2,---,nis divisible by p1--- prvn.

For any positive integer m, let I, be the set of positive integers n such that m{ v,. In this paper, the following results
are proved.

Theorem 1.1. The set of positive integers n such that v,, is divisible by the least common multiple of 1,2, --- , [n'/4| has density one.

Theorem 1.2. For any positive integer m and any positive real number x, we have
1 24’, 1
Im(X) <4 m3x3 " 25logam |
where qp, is the least prime factor of m.
From Theorem 1.1 or Theorem 1.2, we immediately have the following corollary.

Corollary 1.3. For any positive integer m, the set of positive integers n such that m | v, has density one.

2. Proofs

We always use p to denote a prime. Firstly, we give the following two lemmas.

Lemma 2.1. For any prime p and any positive integer k, we have
Ik ={p*ni+r:n e JU{0}, 0<r=<p*—1}\{0}.

Proof. For any integer a, let v,(a) be the p-adic valuation of a. For any rational number a = %, let vp(a) =vp(a) — vp(b).
It is clear that n e Ik if and only if v, (Hp) > —k.

If n < p, then Vp(Hp) = —=vp([1,2,---,n]) > —k. Son e I In the following, we assume that n > p¥. Let
n=pni +r, 0<r<pf—1,n,reZ.

Then nq > 1. Write

n

1 1 b Up pbvy, + auy
Hyp= —+ —Hy, = +—= ! L, 21
n Z m ' pkT ™ T pk-lg pkvn, pkavy, (21)

m=1,pktm

where pta and (up,, vp,) =1.
If ny € Jp, then p | uy, and p {vy,. Thus p | auy, + pbvy, and vp(p"avm) =k. By (2.1), vp(Hy) > —k. Son e Ipre.
If ny ¢ Jp, then p {up,. Thus pfaup, + pbvy,. It follows from (2.1) that v,(Hp) < —k. So n ¢ Lk
Now we have proved that n € I, if and only if ny € Jp U {0}.
This completes the proof of Lemma 2.1. O

Lemma 2.2. For any prime power p¥ and any positive number x, we have

Lo 124 1
ka(x)54(p )3 25Togp x3 " 251ogp |

Proof. If x < p¥, then

1.1 2, 1 lo 12, 1
ka(x)§x<4x3 25logp x3 " 25logp S4(p )3 25logp x3 " 25logp |
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