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We establish a formality theorem for smooth dg manifolds. More precisely, we prove that, 
for any finite-dimensional dg manifold (M, Q ), there exists an L∞ quasi-isomorphism 
of dglas from 

(
⊕T •

poly(M), [Q , −], [−, −]) to 
(
⊕D•

poly(M), �m + Q , −�, �−, −�
)

whose 
first Taylor coefficient (1) is equal to the composition hkr◦(td∇

(M,Q ))
1
2 : ⊕T •

poly(M) →
⊕D•

poly(M) of the action of (td∇
(M,Q ))

1
2 ∈ ∏

k≥0

(
�k(M)

)k
on ⊕T •

poly(M) (by contraction) 
with the Hochschild–Kostant–Rosenberg map and (2) preserves the associative algebra 
structures on the level of cohomology. As an application, we prove the Kontsevich–Shoikhet 
conjecture: a Kontsevich–Duflo-type theorem holds for all finite-dimensional smooth dg 
manifolds.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous prouvons un théorème de formalité pour les variétés lisses différentielles graduées. 
Plus précisément, nous prouvons qu’il existe, pour toute variété différentielle graduée 
(M, Q ), un quasi-isomorphisme L∞ de l’algèbre de Lie différentielle graduée(
⊕T •

poly(M), [Q , −], [−, −]) dans l’algèbre de Lie différentielle graduée(
⊕D•

poly(M), �m + Q , −�, �−, −�
)
, dont le premier coefficient de Taylor (1) est égal à 

la composée hkr◦(td∇
(M,Q ))

1
2 : ⊕T •

poly(M) → ⊕D•
poly(M) de l’action (par contraction) de 

(td∇
(M,Q ))

1
2 ∈ ∏

k≥0

(
�k(M)

)k
sur ⊕T •

poly(M) avec l’application de Hochschild–Kostant–
Rosenberg et (2) respecte les structures d’algèbres associatives en cohomologie. Comme 
application, nous prouvons la conjecture de Kontsevich–Shoikhet : il existe un théorème 
de type Kontsevich–Duflo valable pour toute variété différentielle graduée de dimension 
finie.
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1. Introduction

In 1997, Kontsevich revolutionized the field of deformation quantization with his formality theorem: there exists an L∞
quasi-isomorphism from the dgla Tpoly(M) of polyvector fields on a smooth manifold M to the dgla Dpoly(M) of polydiffer-
ential operators on M whose first “Taylor coefficient” is the classical Hochschild–Kostant–Rosenberg map [19]. Kontsevich’s 
formality theorem completely settled a long-standing problem [3] regarding the existence and classification of deforma-
tion quantizations for all smooth Poisson manifolds. An alternative approach to the formality theorem was developed by 
Tamarkin using operads [31].

Beyond deformation quantization, Kontsevich’s formality construction found other important applications in several dif-
ferent areas of mathematics. One of them is the extension of the classical Duflo theorem. Given a finite-dimensional Lie 
algebra g, the Poincaré–Birkhoff–Witt (PBW) map is the isomorphism of g-modules pbw : S(g) 

∼=−→ U(g) defined by the 
symmetrization map X1 
 · · · 
 Xn �→ 1

n!
∑

σ∈Sn
Xσ(1) · · · Xσ(n) . It induces an isomorphism pbw : S(g)g

∼=−→ U(g)g between 
subspaces of g-invariants. This isomorphism fails to intertwine the obvious multiplications on S(g)g and U(g)g. Neverthe-
less, it can be modified so as to become an isomorphism of associative algebras. The Duflo element J ∈ Ŝ(g∨) is the formal 
power series on g defined by J (x) = det

(
1−e− adx

adx

)
, for all x ∈ g. Considered as a formal linear differential operator on g∨

with constant coefficients, the square root of the Duflo element defines a transformation J
1
2 : S(g) → S(g). A remarkable 

theorem due to Duflo [14] asserts that the composition pbw ◦ J
1
2 : S(g)g → U(g)g is an isomorphism of associative alge-

bras. Duflo’s theorem generalizes a fundamental result of Harish-Chandra regarding the center of the universal enveloping 
algebra of a semi-simple Lie algebra. Duflo’s original proof is based on deep and sophisticated techniques of representation 
theory including Kirillov’s orbit method. As an application of his formality construction, Kontsevich proposed a new proof 
of Duflo’s theorem by means of the associative algebra structure carried by the tangent cohomology at a Maurer–Cartan 
element. Indeed, Kontsevich’s approach [19] led to an extension of Duflo’s theorem: for every finite dimensional Lie al-
gebra g, the map pbw◦ J

1
2 : H•

CE(g, S(g)) → H•
CE(g, U(g)) is an isomorphism of graded associative algebras. The classical 

Duflo theorem is simply the isomorphism between the cohomology groups of degree 0. A detailed proof of the above ex-
tended Duflo theorem was given by Pevzner–Torossian [29] (see also [22,23]). Furthermore, Kontsevich discovered a similar 
phenomenon in complex geometry [19]. Recall that the Hochschild cohomology groups H H•(X) of a complex manifold 
X are defined as the groups Ext•OX×X

(O�, O�). Gerstenhaber–Shack [18] derived an isomorphism of cohomology groups 

hkr : H•(X, �•T X ) 
∼=−→ H H•(X) from the classical Hochschild–Kostant–Rosenberg map. This isomorphism fails to intertwine 

the multiplications on the two cohomologies but can be tweaked so as to produce an isomorphism of associative algebras. 
More precisely, Kontsevich [19] obtained the following theorem: the composition hkr ◦(TdX )

1
2 : H•(X, �•T X ) 

∼=−→ H H•(X), 
where TdX denotes the Todd class of the complex manifold X , is an isomorphism of associative algebras. The multiplica-
tions on H•(X, �•T X ) and H H•(X) are respectively the wedge product and the Yoneda product. Calaque–Van den Bergh [6]
wrote a detailed proof of Kontsevich’s theorem and showed additionally that the map hkr ◦(TdX )

1
2 actually respects the 

Gerstenhaber algebra structures carried by the two cohomologies. A related result was also proved by Dolgushev–Tamarkin–
Tsygan [12,13].

Hence Kontsevich’s formality construction revealed a hidden connection between complex geometry and Lie theory. 
Kontsevich’s discovery of this mysterious and surprising similarity between the Todd class of a complex manifold and 
the Duflo element of a Lie algebra — two seemingly unrelated objects — was responsible for many subsequent exciting 
developments. Naturally, one would wonder whether a general framework encompassing both Lie algebras and complex 
manifolds as special cases could be developed in which a Kontsevich–Duflo-type theorem would hold. This is indeed the 
main goal of this Note. We claim that differential graded (dg) manifolds provide the appropriate framework.

By a dg manifold, we mean a Z-graded manifold endowed with a homological vector field, i.e. a vector field Q of 
degree +1 satisfying [Q , Q ] = 0. Dg manifolds arise naturally in many situations in geometry, Lie theory, and mathematical 
physics. Standard examples of dg manifolds are: (1) Lie algebras — Given a finite-dimensional Lie algebra g, we write g[1]
to denote the dg manifold having C∞(g[1]) = ∧•g∨ as its algebra of functions and the Chevalley–Eilenberg differential 
Q = dCE as its homological vector field. This construction admits an up-to-homotopy version: given a Z-graded vector 
space g = ⊕

i∈Z gi of finite type (i.e. each gi is a finite-dimensional vector space), g[1] is a dg-manifold if and only if g is 
a curved L∞ algebra. (2) Complex manifolds — Given a complex manifold X , we write T 0,1

X [1] to denote the dg manifold 
having C∞(T 0,1

X [1]) ∼= �0,•(X) as its algebra of functions and the Dolbeault operator Q = ∂̄ as its homological vector field. 
(3) Derived intersections — Given a smooth section s of a smooth vector bundle E → M , we write E[−1] to denote the 
dg-manifold having C∞(E[−1]) = �(∧−•(E∨)) as its algebra of functions and the contraction operator is as its homological 
vector field.

In 1998, Shoikhet [30] proposed a conjecture, known as Kontsevich–Shoikhet conjecture, stating that a Kontsevich–Duflo-
type formula holds for all finite-dimensional smooth dg manifolds. In this Note, we prove a formality theorem for smooth dg 
manifolds (Theorem 4.2) and, as an immediate consequence, we confirm the Kontsevich–Shoikhet conjecture (Theorem 4.3). 
Applying Theorem 4.3 to the dg manifold examples of type (1) and (2) mentioned earlier, we recover the Kontsevich–
Duflo theorem for Lie algebras and Kontsevich’s theorem for complex manifolds, respectively. Thus we fulfill our stated 
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