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In 1992, Reid asked whether hyperbolic 3-manifolds with the same geodesic length 
spectra are necessarily commensurable. While this is known to be true for arithmetic 
hyperbolic 3-manifolds, the non-arithmetic case is still open. Building towards a negative 
answer to this question, Futer and Millichap recently constructed infinitely many pairs 
of non-commensurable, non-arithmetic hyperbolic 3-manifolds which have the same 
volume and whose length spectra begin with the same first m geodesic lengths. In the 
present paper, we show that this phenomenon is surprisingly common in the arithmetic 
setting. In particular, given any arithmetic hyperbolic 3-orbifold derived from a quaternion 
algebra, any finite subset S of its geodesic length spectrum, and any k ≥ 2, we produce 
infinitely many k-tuples of arithmetic hyperbolic 3-orbifolds which are pairwise non-
commensurable, have geodesic length spectra containing S , and have volumes lying in 
an interval of (universally) bounded length. The main technical ingredient in our proof is 
a bounded gaps result for prime ideals in number fields lying in Chebotarev sets which 
extends recent work of Thorner.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

En 1992, Reid a demandé si deux 3-variétés hyperboliques partageant le même spectre 
de longueurs géodésiques sont nécessairement commensurables. Ceci s’avère être vrai 
quand les variétés sont arithmétiques, mais la question reste ouverte dans le cas non 
arithmétique. Comme premier pas vers une réponse négative à cette question, Futer et 
Millichap ont récemment construit un nombre infini de paires de 3-variétés hyperboliques 
non arithmétiques et non commensurables ayant le même volume et dont les spectres 
de longueurs commencent avec les mêmes m longueurs géodésiques. Dans le présent 
article, nous démontrons que ce phénomène est étonnamment commun dans le contexte 
arithmétique. En particulier, étant donné une 3-variété hyperbolique arithmétique dérivée 
d’une algèbre de quaternions, un sous-ensemble fini S de son spectre de longueurs 
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géodésiques et un entier k ≥ 2, nous construisons un nombre infini de k-tuples de 
3-variétés hyperboliques arithmétiques qui sont non commensurables deux à deux, ont un 
spectre de longueurs géodésiques contenant S et dont le volume appartient à un intervalle 
de longueur bornée (cette borne est, en outre, universelle pour chaque entier k). Notre 
preuve s’appuie sur un résultat sur les petits écarts entre idéaux premiers d’un corps de 
nombres appartenant à un ensemble de Chebotarev ; ce résultat généralise un article récent 
de Thorner.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Given a closed, negatively curved Riemannian manifold M with fundamental group π1(M), each π1(M)-conjugacy class 
[γ ] has a unique geodesic representative. The multi-set of lengths of these closed geodesics is called the geodesic length 
spectrum and is denoted by L (M). The extent to which L (M) determines M is a basic problem in geometry and is the 
main topic of the present paper. Specifically, our interest lies with the following question, which was posed and studied by 
Reid [13,14]:

Question 1. If M1, M2 are complete, orientable, finite volume hyperbolic n-manifolds and L (M1) = L (M2), then are M1, M2 com-
mensurable?

The motivation for this question is two-fold. First, Reid [13] gave an affirmative answer to Question 1 when n = 2 and 
M1 is arithmetic. In particular, if M1 is arithmetic and L (M1) = L (M2), then M1, M2 are commensurable and hence 
M2 is also arithmetic as arithmeticity is a commensurability invariant. Second, the two most common constructions of 
Riemannian manifolds with the same geodesic length spectra (Sunada [15], Vignéras [17]) both produce manifolds that are 
commensurable. Question 1 has been extensively studied in the arithmetic setting (i.e., when M1 is arithmetic). When n = 3, 
Chinburg–Hamilton–Long–Reid [3] gave an affirmative answer. Prasad–Rapinchuk [12] later showed that the geodesic length 
spectrum of an arithmetic hyperbolic n-manifold determines the manifold up to commensurability when n �≡ 1 (mod 4) and 
n �= 7. Most recently, Garibaldi [5] has confirmed the question in dimension n = 7.

In the non-arithmetic setting (i.e., when neither M1 nor M2 is arithmetic), the relationship between the geodesic length 
spectrum and commensurability class of the manifold is rather mysterious. To our knowledge, the only explicit work in this 
area is Millichap [11] and Futer–Millichap [4]. In [4], which extends work from [11], Futer and Millichap produce, for every 
m ≥ 1, infinitely many pairs of non-commensurable hyperbolic 3-manifolds which have the same volume and the same m
shortest geodesic lengths. Additionally, they give an upper bound on the volume of their manifolds as a function of m. In 
this paper we also consider hyperbolic 3-manifolds and orbifolds. Note that in this context we consider the complex length 
spectrum, which encodes both the real length of a closed geodesic as well as the holonomy angle incurred in traveling once 
around the geodesic. Inspired by [4], in this paper we consider the following question.

Question 2. Let M be an arithmetic hyperbolic 3-orbifold and S be a finite subset of the complex length spectrum L (M) of M. What 
can one say about the set of hyperbolic 3-orbifolds N which are not commensurable with M and for which L (N) contains S?

This question was previously studied by the authors in [8]. Let π(V , S) denote the maximum cardinality of a collection of 
pairwise non-commensurable arithmetic hyperbolic 3-orbifolds derived from quaternion algebras, each of which has volume 
less than V and geodesic length spectrum containing S . In [8], it was shown that, if π(V , S) → ∞ as V → ∞, then there 
are integers 1 ≤ r, s ≤ |S| and constants c1, c2 > 0 such that

c1 V

log(V )
1− 1

2r
≤ π(V , S) ≤ c2 V

log(V )
1− 1

2s

for all sufficiently large V . This shows that not only is it quite common for an arithmetic hyperbolic 3-orbifold to share 
large portions of its geodesic length spectrum with other (non-commensurable) arithmetic hyperbolic 3-orbifolds, but that 
the cardinality of sets of commensurability classes of such orbifolds grows relatively fast.

A few remarks about the hypothesis that π(V , S) → ∞ as V → ∞ are in order. In [8] a number field K (containing a 
unique complex place) and collection of quadratic field extensions L1, . . . , Lr of K were associated with S . Theorem 4.10 of 
[8] shows that a necessary and sufficient condition for π(V , S) → ∞ as V → ∞ is that there exist infinitely many quaternion 
algebras over K which are ramified at all real places of K and which admit embeddings of all of the extensions Li/K . 
The Albert–Brauer–Hasse–Noether theorem, which characterizes when a quaternion algebra over a number field admits an 
embedding of a quadratic extension, therefore implies that it is quite common for π(V , S) → ∞ as V → ∞. It is, however, 
possible for π(V , S) to be non-zero yet eventually constant. In light of the comments above, this amounts to constructing 
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