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r é s u m é

Dans cette note, nous prouvons le théorème du flot tubulaire pour les champs vectoriels 
Lipschitz à divergence nulle.

© 2017 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction and basic definitions

1.1. Introduction

Given a regular orbit of a Cr flow (r ≥ 1), it is always possible, using a change of coordinates, to straighten out all orbits 
in a certain neighborhood of the orbit. This is a very simple, yet important result called the flowbox theorem, and its proof 
uses basically the inverse function theorem (see, e.g., [16, pp. 40]). This theorem describes completely the local behavior of 
the orbits in a neighborhood of a regular orbit and shows that, locally, first integrals always exist. However, since the change 
of coordinates is given implicitly, there is no guarantee that it preserves certain geometric invariants of the flow like, for 
example, the conservation of a volume form or of a symplectic form. We may wonder why there is the need of preservation 
of some invariants? Actually, when working with perturbations of flows/vector fields, it is nice to have good coordinates to 
perform perturbations explicitly; furthermore, once we perturb maintaining the invariant (volume form, symplectic form), 
we would like to ‘return’ to the initial scenario and so we are keenly interested that these change of coordinates keep the 
geometric invariant unchanged, otherwise they are completely useless. With respect to the Hamiltonian vector field context, 
the proof of the flowbox theorem goes back to classic textbooks by Abraham and Marsden [1] and also by Robinson [17], 
with some revisited approaches by the author and Dias [6], and more recently by Cabral [9]. Considering the preservation 
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of the volume form, the flowbox theorem proof was firstly given by the author in [4] (see also the multidimensional case 
in [5]), and afterwards different approaches were given by Barbarosie [3] and by Castro and Oliveira [10].

Nevertheless, when we work with vector fields, whether they are divergence-free, or Hamiltonian or even without any 
invariant restriction at all, in order to have the Picard–Lindelöf uniqueness of integrability into a flow, we impose only 
Lipschitz continuity. So it is natural to ask if previous mentioned results also work in the broader regularity class of Lipschitz 
vector fields. Boldt and Calcaterra [8] gave a satisfactory answer regarding Lipschitz vector fields. Since this work applies 
only to general (i.e. not divergence-free) vector fields, it was not clear that the change of coordinates would preserve 
volume when applied to the special case of divergence-free vector fields. In the present paper, we present a proof of the 
result described in the title. We expect that this basic tool can be useful to complete the theory of continuous flows in the 
volume-preserving case, as it is presented in the recent work [7].

As it is usual in these type of results, the regularity of the change of coordinates obtained is the same as the one of 
the vector field. So we only expect to obtain a lipeomorphism (a bijective Lipschitz map with Lipschitz inverse) for the 
change of coordinates. Indeed, despite the fact that Boldt and Calcaterra’s lipeomorphim does not keep invariant the volume 
necessarily, in [8, Example 5] (see Example 1), an example is presented of a vector field, which curiously is divergence-free, 
and such that no change of coordinates (volume-preserving or not) shall be differentiable.

1.2. Basic definitions

Let M be a connected, closed and C∞ Riemannian manifold of dimension n ≥ 2. Since along this paper we deal with 
divergence-free vector fields, we assume that M is also a volume-manifold with a volume form V : T Mn → R where T M
stands for the tangent bundle. Furthermore, we equip M with an atlas A = {(ϕi, Ui)i} of M (cf. [15]), such that (ϕi)∗V =
dx1 ∧ dx2 ∧ ... ∧ dxn , where xi are the canonical coordinates in the Euclidean space, ϕi : Ui →R

n a local C∞ diffeomorphism 
and Ui an open subset of M . The fact that M is compact guarantees that A can be taken finite, say A = {(ϕi, Ui)}k

i=1. We 
call Lebesgue measure the measure associated with V and denote it by ν . More precisely, we let

ν(B) = νV (B) :=
∫

ϕ(B)

Vϕ−1(x)(Dϕ−1
1 · e1, ..., Dϕ−1

n · en)dx1 . . . dxn,

for some Borelian B ⊂ M where {e1, ..., en} is the canonical base of Rn . Let d(·, ·) stands for the metric associated with the 
Riemannian structure.

We say that a function F : Rn → R is Lipschitz (or Lipschitz continuous) if there exists L > 0 such that ‖F (x) − F (y)‖ ≤
L‖x − y‖ for all x, y ∈ R

n . A Cr vector field X (r ≥ 0) is a Cr map X : M → T M so that X(x) ∈ TxM . Let X be written 
in the coordinates associated with A such that X = ∑n

i=1 Xi
∂

∂xi
. If, for every i = 1, ..., n, each function Xi is Lipschitz 

continuous, then X is said to be a Lipschitz vector field. The integral family of curves, Xt : M → M , associated with X satisfies 
Xt+s(x) = Xt(X s(x)) and X0(x) = x for all t, s ∈ R and x ∈ M and is called the flow associated with X . In [13, Theorem 
3.41 & Lemma 3.42], it is proved that Lipschitz vector fields integrate Lipschitz flows. Rademacher’s theorem ([12, Theorem 
3.1.6]) yields that Lipschitz functions admit derivatives for ν-a.e. (almost every) point. The divergence of a vector field, 
∇ · X : M → R, where ∇ :=

(
∂

∂x1
, ..., ∂

∂xn

)
, is a well-defined function on a ν-full measure subset of M if we assume X to be 

a Lipschitz vector field. We say that a Lipschitz vector field X is divergence-free if ∇ · X = 0 for ν-a.e. x ∈ M . We denote this 

set by X0,1
ν (M). We endow X0,1

ν (M) with the norm ‖ · ‖0,1 defined by ‖X‖0,1 := max

{
sup
p∈M

‖X(p)‖, sup
p,q∈M,p �=q

‖X(p)−X(q)‖
d(p,q)

}
. 

When a vector field X is of class Cr (r ≥ 1), we say that X is divergence-free if ∇ · X = 0 for all x ∈ M .

2. The Abel–Jacobi–Liouville formula for X0,1
ν (M)

As we already said, Lipschitz vector fields are uniquely integrable and, for each time t , the map Xt is Lipschitz continuous, 
thus D Xt

x exists for ν-a.e. x ∈ M . In fact, Xt is a lipeomorphism with respect to the space variable. We say that a Lipschitz 
flow Xt : M → M is volume-preserving if, for any Borelian B ⊆ M and any t ∈ R, we have ν(Xt(B)) = ν(B). From the Change 
of Variables Theorem, this definition is equivalent to the one that assures that for any τ ∈ R and for ν-a.e. point x ∈ M , we 
have det(D Xτ

x ) = 1.
The relation between the volume-preserving property of the flow and the divergence-freeness of the vector field is 

embodied in Proposition 1. This is a kind of Abel–Jacobi–Liouville’s formula, but for the Lipschitz class. For the Cr class 
(r ≥ 2), the proof of this formula is easy and the proof for C1 vector fields usually follows from a C1-approximation of 
C2 vector fields and a limit argument (see, e.g., [14, Theorem 3.2]). Unfortunately, we can not use this argument because 
vector fields in X0,1

ν (M) are not ‖ · ‖0,1-approximable by vector fields in X ∈ X1
ν(M), as we can see in the following simple 

example.

Example 1. Take X(x, y) = (X1(x, y), X2(x, y)) = (1 + |y|, 0) in X0,1
ν (R2) and use [15] to transport it to M = S

2, defining a 
vector field in X0,1

ν (M). Assume, by contradiction, that there exists a C1 vector field Y (x, y) = (Y1(x, y), Y2(x, y)) ∈ X1
ν(M)

such that ∂Y1
∂ y |(0,0) exists and ‖X − Y ‖0,1 < 1. Let us define, for y ∈ (−1, 1), α(y) = Y1(0, y), β(y) = X1(0, y) = 1 + |y| and
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