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We modify an argument of Renardy proving existence and regularity for a subset of a class 
of models of non-Newtonian fluids suggested by Oldroyd, including the upper-convected 
and lower-convected Maxwellian models. We suggest an effective method for solving 
these models, which can provide a variational formulation suitable for finite element 
computation.
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r é s u m é

Nous modifions le raisonnement utilisé par Renardy pour prouver l’existence et la 
régularité de solutions d’une sous-classe de modèles de fluides non newtoniens introduits 
par Oldroyd, comme les modèles maxwelliens de sur-convection et sous-convection. Nous 
proposons une méthode itérative variationnelle de calcul de solutions qui s’adapte aux 
éléments finis.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

We summarize here results obtained in [7] regarding models for non-Newtonian fluids that are a subset of the Oldroyd 
models [9], including the upper-convected and lower-convected Maxwellian models. The subset we study involves three 
parameters, the fluid kinematic viscosity η and two rheological parameters λ1 and μ1. We refer to this subset as the 
“three-parameter” subset. We modify the existence proof of Renardy [10] and show that it can be the basis for an effective 
solution algorithm.
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Well-posedness has also been established [4] for a “five-parameter” subset of the Oldroyd models [9] involving two ad-
ditional rheological parameters λ2 and μ2. The techniques used for these models are quite different from the ones used 
by Renardy [10] and revisited here. For some reasons explained in [7], we are forced to limit our approach to the three-
parameter case. The approaches are complementary, and this potentially reflects significant differences in these models. 
In [4], λ2 �= 0 is explicitly required, and (as far as we are aware) the bounds obtained would degenerate as λ2 → 0. The con-
dition λ2 > 0 leads to an explicit dissipation term that is used in obtaining bounds. When λ2 = 0, such explicit dissipation 
is missing. Thus there is an open question regarding bounds, when λ2 > 0, that hold uniformly for λ2 small.

1.1. Notation

We assume that the fluid domain D ⊂ R
d is connected and has a Lipschitz boundary ∂D. For simplicity, we assume 

that the boundary conditions on the fluid velocity are Dirichlet: u = 0 on ∂D. We utilize standard Sobolev spaces W s
q(D)

for nonnegative integers s and 1 ≤ q ≤ ∞, consisting of functions whose derivatives of order s or less are in the Lebesgue 
space Lq(D) [5,1,3]. For vector-valued functions v and matrix-valued functions T, we will write v ∈ W s

q(D)d or T ∈ W s
q(D)d2

to indicate that each component of v or T is W s
q(D). We will also write the corresponding norms for vector-valued and 

tensor-valued functions via

‖T‖W s
q(D) =

s∑
m=0

‖ |∇mT| ‖Lq(D),

where for tensor quantities T of any order r ≥ 1, we denote by |T| the Euclidean norm of T when viewed as a vector of 
dimension d r .

Regarding the regularity of the domain boundary, we make the following assumptions. Consider the elliptic equations

v − �v = f in D, ∇v · n = 0 on ∂D, (1.1)

where n is the unit outer normal to ∂D, and

−�v = f in D, v = 0 on ∂D. (1.2)

We introduce the following condition: suppose that the domain D has the property that there is a constant C such that 
each problem (1.1) and (1.2) has a unique solution v ∈ H2(D) for all f ∈ L2(D) satisfying

‖ v ‖H2(D) ≤ C‖ f ‖L2(D). (1.3)

Similarly, we consider a Stokes system,

−�v + ∇p = f in D, ∇· v = 0 in D, v = 0 on ∂D. (1.4)

We introduce the following condition: suppose that, for some q > 1, the domain D has the property that there is a constant 
Cq,D such that, for all f ∈ Lq(D)d , there is a unique pair v ∈ W 2

q (D)d and p ∈ W 1
q (D)/R solving (1.4) such that

‖v‖W 2
q (D) + ‖ p ‖W 1

q (D)/R ≤ Cq,D‖ f‖Lq(D) for all f ∈ Lq(D)d. (1.5)

We assume this holds for all q ≤ q0 where q0 > 1. Ultimately, many of the results will be restricted to the case q0 > d, 
where d is the dimension of D.

2. Rheology models

In all (time-independent) models of fluids, the basic equation can be written as

u · ∇u + ∇p = ∇·T + f, (2.6)

where T is called the extra (or deviatoric) stress and f represents externally given data. The models differ only according to 
the dependence of the stress on the velocity u.

A three parameter subset of the eight-parameter model of Oldroyd [9] for the extra stress takes the form

T + λ1(u · ∇T + RT + TRt) − μ1(ET + TE) = 2ηE,

where the five parameters λ2, μ2, μ0, ν0, and ν1 in [9] are set to zero, and R = 1
2 (∇ut − ∇u) and E = 1

2 (∇u + ∇ut). This 
can be written equivalently as

T + λ1(u · ∇T − (∇u)T − T(∇ut)) + (λ1 − μ1)(ET + TE) = 2ηE.

We can write the full model in the steady case as 
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