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Making use of the recent theory of noncommutative mixed motives, we prove that the 
Voevodsky’s mixed motive of a quadric fibration over a smooth curve is Kimura-finite.
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r é s u m é

Utilisant la théorie récente des motifs non commutatifs, nous prouvons que le motif mixte 
de Voevodsky d’une fibration en quadriques sur une courbe lisse est fini au sens de Kimura.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let (C, ⊗, 1) be a Q-linear, idempotent complete, symmetric monoidal category. Given a partition λ of an integer n ≥ 1, 
consider the corresponding irreducible Q-linear representation Vλ of the symmetric group Sn and the associated idem-
potent eλ ∈ Q[Sn]. Under these notations, the Schur-functor Sλ: C → C sends an object a to the direct summand of 
a⊗n determined by eλ . In the particular case of the partition λ = (1, . . . , 1), resp. λ = (n), the associated Schur-functor 
∧n := S(1,...,1) , resp. Symn := S(n) , is called the nth wedge product, resp. the nth symmetric product. Following Kimura [11], an 
object a ∈ C is called even-dimensional, resp. odd-dimensional, if ∧n(a), resp. Symn(a) = 0, for some n � 0. The biggest inte-
ger kim+(a), resp. kim−(a), for which ∧kim+(a) �= 0, resp. Symkim−(a)(a) �= 0, is called the even, resp. odd, Kimura-dimension 
of a. An object a ∈ C is called Kimura-finite if a 	 a+ ⊕ a− , with a+ even-dimensional and a− odd-dimensional. The integer 
kim(a) = kim+(a+) + kim−(a−) is called the Kimura-dimension of a.

Voevodsky introduced in [20] an important triangulated category of geometric mixed motives DMgm(k)Q (over a per-
fect base field k). By construction, this category is Q-linear, idempotent complete, rigid symmetric monoidal, and comes 
equipped with a symmetric monoidal functor M(−)Q: Sm(k) → DMgm(k)Q , defined on smooth k-schemes. An important 
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open problem2 is the classification of all the Kimura-finite mixed motives and the computation of the corresponding 
Kimura-dimensions. On the negative side, O’Sullivan constructed a certain smooth surface S whose mixed motive M(S)Q is 
not Kimura-finite; consult [14, §5.1] for details. On the positive side, Guletskii [7] and Mazza [14] proved, independently, 
that the mixed motive M(C)Q of every smooth curve C is Kimura-finite.

The following result bootstraps Kimura-finiteness from smooth curves to quadric fibrations.

Theorem 1.1. Let k be a field, C a smooth k-curve, and q: Q → C a flat quadric fibration of relative dimension d − 2. Assume that Q is 
smooth and that q has only simple degenerations, i.e. that all the fibers of q have corank ≤ 1. Under these assumptions, the following 
holds:

(i) when d is even, the mixed motive M(Q )Q is Kimura-finite. Moreover, we have the following equality, kim(M(Q )Q) =
kim(M(C̃)Q) + (d − 2)kim(M(C)Q), where D ↪→ C stands for the finite set of critical values of q and C̃ for the discriminant 
double cover of C (ramified over D);

(ii) when d is odd, k is algebraically closed, and 1/2 ∈ k, the mixed motive M(Q )Q is Kimura-finite. Moreover, we have the following 
equality kim(M(Q )Q) = #D + (d − 1)kim(M(C)Q).

To the best of the author’s knowledge, Theorem 1.1 is new in the literature. It not only provides new examples of 
Kimura-finite mixed motives, but also computes the corresponding Kimura dimensions.

Remark 1. In the particular case where k is algebraically closed and Q , C are moreover projective, Vial proved in [19, 
Cor. 4.4] that the Chow motive h(Q )Q is Kimura-finite. Since the category of Chow motives embeds fully-faithfully into 
DMgm(k)Q (see [20, §4]), we then obtain in this particular case an alternative “geometric” proof of the Kimura-finiteness 
of M(Q )Q . Moreover, when k = C and d is odd, Bouali refined Vial’s work by showing that h(Q )Q 	 Q(− d−1

2 )⊕#D ⊕⊕d−2
i=0 h(C)Q(−i); see [4, Rk. 1.10(i)]. In this particular case, this leads to an alternative “geometric” computation of the 

Kimura-dimension of M(Q )Q .

2. Preliminaries

Throughout the article, k denotes a base field of arbitrary characteristic.
Dg categories. For a survey on dg categories, consult Keller’s ICM talk [9]. In what follows, we write dgcat(k) for the 

category of (essentially small) dg categories and dg functors. Every (dg) k-algebra gives naturally rise to a dg category with 
a single object. Another source of examples is provided by schemes/stacks, since the category of perfect complexes perf(X)

of every k-scheme X (or, more generally, algebraic stack X ) admits a canonical dg enhancement perfdg(X); consult [9, 
§4.6][13] for details.

Noncommutative mixed motives. For a book, resp. survey, on noncommutative motives, consult [15], resp. [16]. Recall 
from [15, §8.5.1] the construction of Kontsevich’s triangulated category of noncommutative mixed motives NMot(k); denoted 
by NMotA

1

loc(k) in loc. cit. By construction, this category is idempotent complete, closed symmetric monoidal, and comes 
equipped with a symmetric monoidal functor U : dgcat(k) → NMot(k). In what follows, given a k-scheme X , we write U (X)

instead of U (perfdg(X)).

Root stacks. Let X be a k-scheme, L a line bundle on X , σ ∈ �(X, L) a global section, and r > 0 an integer. In what 
follows, we write D ↪→ X for the zero locus of σ . Recall from [5, Def. 2.2.1] (see also [1, Appendix B]) that the associated 
root stack is defined as the following fiber-product of algebraic stacks

r
√

(L,σ )/X [A1/Gm]
θr

X
(L,σ )

[A1/Gm] ,

where θr stands for the morphism induced by the rth power maps on A1 and Gm .

Proposition 2.1. We have U ( r
√

(L, σ )/X) 	 U (D)⊕(r−1) ⊕ U (X) whenever X and D are k-smooth.

2 Among other consequences, Kimura-finiteness implies rationality of the motivic zeta function.
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