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We present a successive constraint approach that makes it possible to cheaply solve large-
scale linear matrix inequalities for a large number of parameter values. The efficiency 
of our method is made possible by an offline/online decomposition of the workload. 
Expensive computations are performed beforehand, in the offline stage, so that the problem 
can be solved very cheaply in the online stage. We also extend the method to approximate 
solutions to semidefinite programming problems.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous présentons une méthode de contraintes successives qui réduit le travail nécessaire 
pour résoudre les inégalités matricielles linéaires paramétriques de grande dimension. Une 
caractéristique importante de notre méthode est la décomposition hors ligne/en ligne du 
travail. Les calculs coûteux sont effectués à l’avance, hors ligne, pour nous permettre de 
résoudre le problème de manière très économique en ligne. La même méthode est aussi 
appliquée à l’approximation des solutions des problèmes d’optimisation SDP.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Linear matrix inequalities (LMIs) are a general type of convex constraint that includes linear as well as quadratic con-
straints [11,12] and lead to very natural formulations of a large number of problems in control and systems theory [2,4]. 
They can be solved using a wide range of existing methods [1,5,6,10], but that can be expensive for large-scale problems. 
In particular, problems resulting from the discretization of partial differential equations can be extremely expensive due to 
their high dimensionality. The computations are even more expensive if parameter-dependent problems are considered and 
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solutions are needed for a large number of parameter values. In that case traditional solution methods are extremely inef-
ficient. We propose the construction of reduced-order models that take advantage of the parametric nature of the problem 
and allow us to very cheaply produce solutions for a large number of parameter values.

Let us introduce a finite-dimensional, bounded parameter domain D ∈R
p and the parameter-dependent LMI

F (x;μ) :=
Q F∑

q=1

[
θ0

q (μ) + θ L
q (μ)x

]
Fq � 0. (L)

Here F (x; μ) ∈ R
N×N is a symmetric matrix that depends on both the parameter μ ∈ D and the decision variable x ∈ R

n

and is composed of Q F parameter-independent matrices Fq ∈ R
N×N . The parameter dependencies of F (x; μ) are given 

by the functions θ0(·) : D → R
Q F and θ L(·) : D → R

Q F ×n . We use subscripts to indicate components of a vector, such that 
θ0

q (μ) is the qth element of θ0(μ). Similarly, we write θ L
q (μ) to indicate the qth row of θ L(μ). The symbol � will be used 

in the sense that P � 0 indicates that the symmetric matrix P is positive semi-definite.
The goal of this paper is to efficiently solve the following problems for a large number of parameter values μ ∈ D:

(i) the strict feasibility problem: find an x ∈ R
n such that F (x; μ) � 0;

(ii) the semidefinite program (SDP):

minimize
x∈Rn

c(μ)Tx subject to F (x;μ) � 0. (S)

Rather than directly solving these problems for each new parameter value, we will solve them for only a small set of 
intelligently chosen parameter values. We will then use the resulting solutions to build a reduced-order model that can 
approximate the solution anywhere in D.

The method that we propose can be viewed as a generalization of the successive constraint method (SCM) [3,7], which 
is often used in the field of reduced basis methods to evaluate stability constants [9]. This method will allow us to very 
cheaply determine feasible solutions for any μ ∈ D. That is made possible by decomposing the computational workload 
into offline and online stages. All expensive computations will be performed in advance, during the offline stage. During 
the online stage the cost to solve the problem for a new parameter value will be independent of the size of the original 
constraint, N . In that way the computational cost of each new solution will remain cheap even if the original constraint 
has very large dimensions.

Our methods are applicable to a wide range of LMIs and can also be used to extend the applicability of SCM. In the con-
text of reduced basis methods, applications could involve bounding stability constants with respect to parameter-dependent 
norms or the selection of Lyapunov functions for the computation of error bounds [8]. In Section 4 we present an example 
in which we optimize a system while ensuring that it remains stable.

2. Reduced-order modeling for strict feasibility

SCM was originally designed to approximate coercivity constants. We will apply a modified version of SCM to the coer-
civity constant

α(x;μ) := inf
v∈RN

vT F (x;μ)v

vT F S v
, (1)

where F S ∈R
N×N is a fixed symmetric positive-definite matrix. From the definition it is clear that α(x; μ) ≥ 0 is equivalent 

to F (x; μ) � 0 for all symmetric positive definite matrices F S . Nevertheless, an appropriate choice of F S could be beneficial 
from a numerical point of view. If we are dealing with PDE discretizations, it can be advantageous to choose a matrix 
associated with an energy norm.

The first step in applying SCM is reformulating the coercivity constant as follows:

α(x;μ) = inf
y∈Y

[
θ0(μ) + θ L(μ)x

]T
y, where Y :=

{
y ∈R

Q F

∣∣∣yq = vT Fq v

vT F S v
, v ∈R

N
}

. (2)

This formulation has the advantage that the complexity of the problem has been shifted to the definition of the set Y . That 
allows us to compute lower and upper bounds for α(x; μ) by approximating Y .

A lower bound for α(x; μ) can be derived by approximating Y from the outside. A bounded but primitive approximation 
for Y is given by

BQ :=
Q F∏
i=1

[
inf
y∈Y yq, sup

y∈Y
yq

]
⊂ R

Q F . (3)
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