Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Lie algebras

A remark on boundary level admissible representations

Une remarque sur les représentations admissibles de niveau limite

Victor G. Kac, Minoru Wakimoto

Department of Mathematics, M.I.T., Cambridge, MA 02139, USA

ARTICLE INFO

Article history: Received 16 January 2017 Accepted 17 January 2017 Available online 1 February 2017

Presented by Michèle Vergne

ABSTRACT

We point out that it is immediate by our character formula that in the case of a *boundary level* the characters of admissible representations of affine Kac–Moody algebras and the corresponding *W*-algebras decompose in products in terms of the Jacobi form $\vartheta_{11}(\tau, z)$.

@ 2017 Published by Elsevier Masson SAS on behalf of Académie des sciences.

RÉSUMÉ

Nous remarquons la conséquence suivante de notre formule de caractères. Pour un niveau limite, les caractères d'une représentation admissible d'une algèbre de Kac-Moody affine ainsi que de la *W*-algèbre correspondante s'expriment comme des produits de formes de Jacobi $\vartheta_{11}(\tau, z)$.

© 2017 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Recently a remarkable map between 4-dimensional superconformal field theories and vertex algebras has been constructed [1]. This has led to new insights in the theory of characters of vertex algebras. In particular it was observed that in some cases these characters decompose in nice products [10,8].

The purpose of this note is to explain the latter phenomena. Namely, we point out that it is immediate by our character formula [5,6] that in the case of a *boundary level* the characters of admissible representations of affine Kac–Moody algebras and the corresponding *W*-algebras decompose in products in terms of the Jacobi form $\vartheta_{11}(\tau, z)$.

We would like to thank Wenbin Yan for drawing our attention to this question.

Let \mathfrak{g} be a simple finite-dimensional Lie algebra over \mathbb{C} , let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g} , and let $\Delta \subset \mathfrak{h}^*$ be the set of roots. Let $Q = \mathbb{Z}\Delta$ be the root lattice and let $Q^* = \{h \in \mathfrak{h} \mid \alpha(h) \in \mathbb{Z} \text{ for all } \alpha \in \Delta\}$ be the dual lattice. Let $\Delta_+ \subset \Delta$ be a subset of positive roots, let $\{\alpha_1, \ldots, \alpha_\ell\}$ be the set of simple roots and let ρ be half of the sum of positive roots. Let W be the Weyl group. Let (.|.) be the invariant symmetric bilinear form on \mathfrak{g} , normalized by the condition $(\alpha|\alpha) = 2$ for a long root α , and let h^{\vee} be the dual Coxeter number $(=\frac{1}{2}$ eigenvalue of the Casimir operator on \mathfrak{g}). We shall identify \mathfrak{h} with \mathfrak{h}^* using the form (.|.).

Let $\hat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] + \mathbb{C}K + \mathbb{C}d$ be the associated with \mathfrak{g} affine Kac–Moody algebra (see [3] for details), let $\hat{\mathfrak{h}} = \mathfrak{h} + \mathbb{C}K + \mathbb{C}d$ be its Cartan subalgebra. We extend the symmetric bilinear form (. | .) from \mathfrak{h} to $\hat{\mathfrak{h}}$ by letting ($\mathfrak{h}|\mathbb{C}K + \mathbb{C}d$) = 0, (K|K) = 0,

http://dx.doi.org/10.1016/j.crma.2017.01.008

CrossMark

E-mail addresses: kac@math.mit.edu (V.G. Kac), wakimoto@r6.dion.ne.jp (M. Wakimoto).

¹⁶³¹⁻⁰⁷³X/ \odot 2017 Published by Elsevier Masson SAS on behalf of Académie des sciences.

(d|d) = 0, (d|K) = 1, and we identify $\hat{\mathfrak{h}}^*$ with $\hat{\mathfrak{h}}$ using this form. Then *d* is identified with the 0th fundamental weight $\Lambda_0 \in \hat{\mathfrak{h}}^*$, such that $\Lambda_0|_{\mathfrak{gl}(t,t^{-1}]+\mathbb{C}d} = 0$, $\Lambda_0(K) = 1$, and K is identified with the imaginary root $\delta \in \hat{\mathfrak{h}}^*$. Then the set of real roots of $\hat{\mathfrak{g}}$ is $\hat{\Delta}^{\text{re}} = \{\alpha + n\delta | \alpha \in \Delta, n \in \mathbb{Z}\}$ and the subset of positive real roots is $\hat{\Delta}^{\text{re}}_+ = \Delta_+ \cup \{\alpha + n\delta | \alpha \in \Delta, n \in \mathbb{Z}_{\geq 1}\}$. Let $\hat{\rho} = h^{\vee} \Lambda_0 + \rho$. Let

$$\widehat{\Pi}_u = \{ u\delta - \theta, \alpha_1, \dots, \alpha_\ell \},\$$

where $\theta \in \Delta_+$ is the highest root, so that $\hat{\Pi}_1$ is the set of simple roots of $\hat{\mathfrak{g}}$. For $\alpha \in \hat{\Delta}^{\mathrm{re}}$ one lets $\alpha^{\vee} = 2\alpha/(\alpha|\alpha)$. Finally, for $\beta \in Q^*$ define the translation $t_{\beta} \in \operatorname{End} \hat{\mathfrak{h}}^*$ by

$$t_{\beta}(\lambda) = \lambda + \lambda(K)\beta - ((\lambda|\beta) + \frac{1}{2}\lambda(K)|\beta|^2)\delta.$$

Given $\Lambda \in \hat{\mathfrak{h}}^*$ let $\hat{\Delta}^{\Lambda} = \{ \alpha \in \hat{\Delta}^{\text{re}} \mid (\Lambda \mid \alpha^{\vee}) \in \mathbb{Z} \}$. Then Λ is called an *admissible* weight if the following two properties hold:

(i) $(\Lambda + \widehat{\rho} | \alpha^{\vee}) \notin \mathbb{Z}_{\leq 0}$ for all $\alpha \in \widehat{\Delta}_+$, (ii) $\mathbb{O}\hat{\Delta}^{\Lambda} = \mathbb{O}\hat{\Delta}^{\mathrm{re}}$.

If instead of (ii) a stronger condition holds:

(ii)' $\varphi(\hat{\Delta}^{\Lambda}) = \hat{\Delta}^{\text{re}}$ for a linear isomorphism $\varphi: \hat{\mathfrak{h}}^* \to \hat{\mathfrak{h}}^*$,

then Λ is called a *principal* admissible weight. In [6] the classification and character formulas for admissible weights are reduced to that for principal admissible weights. The latter are described by the following proposition.

Proposition 1. [6] Let Λ be a principal admissible weight and let $k = \Lambda(K)$ be its level. Then

(a) *k* is a rational number with denominator $u \in \mathbb{Z}_{\geq 1}$, such that

$$k + h^{\vee} \ge \frac{h^{\vee}}{u} \text{ and } \gcd(u, h^{\vee}) = \gcd(u, r^{\vee}) = 1, \tag{1}$$

where $r^{\vee} = 1$ for g of type A-D-E, = 2 for g of type B, C, F, and = 3 for $g = G_2$.

(b) All principal admissible weights are of the form

$$\Lambda = (t_{\beta}y).(\Lambda^{0} - (u - 1)(k + h^{\vee})\Lambda_{0}),$$
⁽²⁾

where $\beta \in Q^*$, $y \in W$ are such that $(t_{\beta}y)\hat{\Pi}_{u} \subset \hat{\Delta}_{+}$, Λ^{0} is an integrable weight of level $u(k + h^{\vee}) - h^{\vee}$, and dot denotes the shifted action: $w \cdot \Lambda = w(\Lambda + \widehat{\rho}) - \widehat{\rho}$.

(c) For $g = s\ell_N$ all admissible weights are principal admissible.

Recall that the normalized character of an irreducible highest weight $\hat{\mathfrak{g}}$ -module $L(\Lambda)$ of level $k \neq -h^{\vee}$ is defined by

$$ch_{\Lambda}(\tau, z, t) = q^{m_{\Lambda}} tr_{L(\Lambda)} e^{2\pi i h}$$

where

$$h = -\tau d + z + tK, \ z \in \mathfrak{h}, \ \tau, t \in \mathbb{C}, \ \operatorname{Im} \tau > 0, \ q = e^{2\pi i \tau},$$
(3)

and $m_{\Lambda} = \frac{|\Lambda + \hat{\rho}|^2}{2(k+h^{\vee})} - \frac{\dim \mathfrak{g}}{24}$ (the normalization factor $q^{m_{\Lambda}}$ "improves" the modular invariance of the character). In [6], the characters of the $\hat{\mathfrak{g}}$ -modules $L(\Lambda)$ for arbitrary admissible Λ were computed, see Theorem 3.1, or formula (3.3) there for another version in case of a principal admissible Λ . In order to write down the latter formula, recall the normalized affine denominator for \hat{g} :

$$\hat{R}(h) = q^{\frac{\dim \mathfrak{g}}{24}} e^{\hat{\rho}(h)} \prod_{n=1}^{\infty} (1-q^n)^{\ell} \prod_{\alpha \in \Delta_+} (1-e^{\alpha(z)}q^n)(1-e^{-\alpha(z)}q^{n-1}).$$

In coordinates (3) this becomes:

$$\hat{R}(\tau, z, t) = (-i)^{|\Delta_+|} e^{2\pi i h^{\vee} t} \eta(\tau)^{\frac{1}{2}(3\ell - \dim \mathfrak{g})} \prod_{\alpha \in \Delta_+} \vartheta_{11}(\tau, \alpha(z)),$$
(4)

where

Download English Version:

https://daneshyari.com/en/article/8905891

Download Persian Version:

https://daneshyari.com/article/8905891

Daneshyari.com