Lie algebras

A remark on boundary level admissible representations

CrossMark

Une remarque sur les représentations admissibles de niveau limite

Victor G. Kac, Minoru Wakimoto
Department of Mathematics, M.I.T., Cambridge, MA 02139, USA

A R T I C L E I N F O

Article history:

Received 16 January 2017
Accepted 17 January 2017
Available online 1 February 2017
Presented by Michèle Vergne

Abstract

We point out that it is immediate by our character formula that in the case of a boundary level the characters of admissible representations of affine Kac-Moody algebras and the corresponding W-algebras decompose in products in terms of the Jacobi form $\vartheta_{11}(\tau, z)$.

© 2017 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Ré S U M É

Nous remarquons la conséquence suivante de notre formule de caractères. Pour un niveau limite, les caractères d'une représentation admissible d'une algèbre de Kac-Moody affine ainsi que de la W-algèbre correspondante s'expriment comme des produits de formes de Jacobi $\vartheta_{11}(\tau, z)$.
© 2017 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Recently a remarkable map between 4-dimensional superconformal field theories and vertex algebras has been constructed [1]. This has led to new insights in the theory of characters of vertex algebras. In particular it was observed that in some cases these characters decompose in nice products [10,8].

The purpose of this note is to explain the latter phenomena. Namely, we point out that it is immediate by our character formula [5,6] that in the case of a boundary level the characters of admissible representations of affine Kac-Moody algebras and the corresponding W-algebras decompose in products in terms of the Jacobi form $\vartheta_{11}(\tau, z)$.

We would like to thank Wenbin Yan for drawing our attention to this question.
Let \mathfrak{g} be a simple finite-dimensional Lie algebra over \mathbb{C}, let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g}, and let $\Delta \subset \mathfrak{h}^{*}$ be the set of roots. Let $Q=\mathbb{Z} \Delta$ be the root lattice and let $Q^{*}=\{h \in \mathfrak{h} \mid \alpha(h) \in \mathbb{Z}$ for all $\alpha \in \Delta\}$ be the dual lattice. Let $\Delta_{+} \subset \Delta$ be a subset of positive roots, let $\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$ be the set of simple roots and let ρ be half of the sum of positive roots. Let W be the Weyl group. Let (.|.) be the invariant symmetric bilinear form on \mathfrak{g}, normalized by the condition $(\alpha \mid \alpha)=2$ for a long root α, and let h^{\vee} be the dual Coxeter number ($=\frac{1}{2}$ eigenvalue of the Casimir operator on \mathfrak{g}). We shall identify \mathfrak{h} with \mathfrak{h}^{*} using the form (.|.).

Let $\widehat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right]+\mathbb{C} K+\mathbb{C} d$ be the associated with \mathfrak{g} affine Kac-Moody algebra (see [3] for details), let $\widehat{\mathfrak{h}}=\mathfrak{h}+\mathbb{C} K+\mathbb{C d}$ be its Cartan subalgebra. We extend the symmetric bilinear form (.|.) from \mathfrak{h} to $\widehat{\mathfrak{h}}$ by letting $(\mathfrak{h} \mid \mathbb{C} K+\mathbb{C d})=0,(K \mid K)=0$,

[^0]$(d \mid d)=0,(d \mid K)=1$, and we identify $\widehat{\mathfrak{h}}^{*}$ with $\widehat{\mathfrak{h}}$ using this form. Then d is identified with the 0 th fundamental weight $\Lambda_{0} \in \widehat{\mathfrak{h}}^{*}$, such that $\left.\Lambda_{0}\right|_{\mathfrak{g}\left[t, t^{-1}\right]+\mathbb{C} d}=0, \Lambda_{0}(K)=1$, and K is identified with the imaginary root $\delta \in \widehat{\mathfrak{h}}^{*}$. Then the set of real roots of $\widehat{\mathfrak{g}}$ is $\hat{\Delta}^{\text {re }}=\{\alpha+n \delta \mid \alpha \in \Delta, n \in \mathbb{Z}\}$ and the subset of positive real roots is $\hat{\Delta}_{+}^{\text {re }}=\Delta_{+} \cup\left\{\alpha+n \delta \mid \alpha \in \Delta, n \in \mathbb{Z}_{\geq 1}\right\}$. Let $\hat{\rho}=h^{\vee} \Lambda_{0}+\rho$. Let
$$
\hat{\Pi}_{u}=\left\{u \delta-\theta, \alpha_{1}, \ldots, \alpha_{\ell}\right\}
$$
where $\theta \in \Delta_{+}$is the highest root, so that $\hat{\Pi}_{1}$ is the set of simple roots of $\widehat{\mathfrak{g}}$. For $\alpha \in \hat{\Delta}^{\text {re }}$ one lets $\alpha^{\vee}=2 \alpha /(\alpha \mid \alpha)$. Finally, for $\beta \in Q^{*}$ define the translation $t_{\beta} \in$ End $\widehat{\mathfrak{h}}^{*}$ by
$$
t_{\beta}(\lambda)=\lambda+\lambda(K) \beta-\left((\lambda \mid \beta)+\frac{1}{2} \lambda(K)|\beta|^{2}\right) \delta .
$$

Given $\Lambda \in \widehat{\mathfrak{h}}^{*}$ let $\hat{\Delta}^{\Lambda}=\left\{\alpha \in \hat{\Delta}^{\mathrm{re}} \mid\left(\Lambda \mid \alpha^{\vee}\right) \in \mathbb{Z}\right\}$. Then Λ is called an admissible weight if the following two properties hold:
(i) $\left(\Lambda+\widehat{\rho} \mid \alpha^{\vee}\right) \notin \mathbb{Z}_{\leq 0}$ for all $\alpha \in \hat{\Delta}_{+}$,
(ii) $\mathbb{Q} \hat{\Delta}^{\Lambda}=\mathbb{Q} \hat{\Delta}^{\text {re }}$.

If instead of (ii) a stronger condition holds:
$(\text { ii })^{\prime} \varphi\left(\hat{\Delta}^{\Lambda}\right)=\hat{\Delta}^{\text {re }}$ for a linear isomorphism $\varphi: \widehat{\mathfrak{h}}^{*} \rightarrow \widehat{\mathfrak{h}}^{*}$,
then Λ is called a principal admissible weight. In [6] the classification and character formulas for admissible weights are reduced to that for principal admissible weights. The latter are described by the following proposition.

Proposition 1. [6] Let Λ be a principal admissible weight and let $k=\Lambda(K)$ be its level. Then
(a) k is a rational number with denominator $u \in \mathbb{Z}_{\geq 1}$, such that

$$
\begin{equation*}
k+h^{\vee} \geq \frac{h^{\vee}}{u} \text { and } \operatorname{gcd}\left(u, h^{\vee}\right)=\operatorname{gcd}\left(u, r^{\vee}\right)=1 \tag{1}
\end{equation*}
$$

where $r^{\vee}=1$ for \mathfrak{g} of type $A-D-E,=2$ for \mathfrak{g} of type B, C, F, and $=3$ for $\mathfrak{g}=G_{2}$.
(b) All principal admissible weights are of the form

$$
\begin{equation*}
\Lambda=\left(t_{\beta} y\right) \cdot\left(\Lambda^{0}-(u-1)\left(k+h^{\vee}\right) \Lambda_{0}\right) \tag{2}
\end{equation*}
$$

where $\beta \in Q^{*}, y \in W$ are such that $\left(t_{\beta} y\right) \hat{\Pi}_{u} \subset \hat{\Delta}_{+}, \Lambda^{0}$ is an integrable weight of level $u\left(k+h^{\vee}\right)-h^{\vee}$, and dot denotes the shifted action: $w . \Lambda=w(\Lambda+\widehat{\rho})-\widehat{\rho}$.
(c) For $\mathfrak{g}=s \ell_{N}$ all admissible weights are principal admissible.

Recall that the normalized character of an irreducible highest weight $\widehat{\mathfrak{g}}$-module $L(\Lambda)$ of level $k \neq-h^{\vee}$ is defined by

$$
\operatorname{ch}_{\Lambda}(\tau, z, t)=q^{m_{\Lambda}} \operatorname{tr}_{L(\Lambda)} \mathrm{e}^{2 \pi \mathrm{i} h}
$$

where

$$
\begin{equation*}
h=-\tau d+z+t K, z \in \mathfrak{h}, \tau, t \in \mathbb{C}, \operatorname{Im} \tau>0, q=\mathrm{e}^{2 \pi \mathrm{i} \tau} \tag{3}
\end{equation*}
$$

and $m_{\Lambda}=\frac{|\Lambda+\widehat{\rho}|^{2}}{2\left(k+h^{v}\right)}-\frac{\operatorname{dimg}}{24}$ (the normalization factor $q^{m_{\Lambda}}$ "improves" the modular invariance of the character).
In [6], the characters of the $\widehat{\mathfrak{g}}$-modules $L(\Lambda)$ for arbitrary admissible Λ were computed, see Theorem 3.1, or formula (3.3) there for another version in case of a principal admissible Λ. In order to write down the latter formula, recall the normalized affine denominator for $\widehat{\mathfrak{g}}$:

$$
\hat{R}(h)=q^{\frac{\operatorname{dim} \mathfrak{g}}{24}} e^{\widehat{\rho}(h)} \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{\ell} \prod_{\alpha \in \Delta_{+}}\left(1-\mathrm{e}^{\alpha(z)} q^{n}\right)\left(1-\mathrm{e}^{-\alpha(z)} q^{n-1}\right)
$$

In coordinates (3) this becomes:

$$
\begin{equation*}
\hat{R}(\tau, z, t)=(-\mathrm{i})^{\left|\Delta_{+}\right|} \mathrm{e}^{2 \pi \mathrm{i} h^{\vee} t} \eta(\tau)^{\frac{1}{2}(3 \ell-\operatorname{dim} \mathfrak{g})} \prod_{\alpha \in \Delta_{+}} \vartheta_{11}(\tau, \alpha(z)) \tag{4}
\end{equation*}
$$

where

https://daneshyari.com/en/article/8905891

Download Persian Version:

https://daneshyari.com/article/8905891

Daneshyari.com

[^0]: E-mail addresses: kac@math.mit.edu (V.G. Kac), wakimoto@r6.dion.ne.jp (M. Wakimoto).
 http://dx.doi.org/10.1016/j.crma.2017.01.008
 1631-073X/© 2017 Published by Elsevier Masson SAS on behalf of Académie des sciences.

